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Abstract

This paper proposes a new algorithm to conduct robust Bayesian analysis for set-identified

structural models. It combines standard Bayesian procedure with a characterization of

observationally equivalent parameters. The algorithm finds the range of posterior means

and the Bayesian credible region of both the structural parameters and any parameters of

interest, ensuring robustness against the selection of priors within a class that produces

identical marginal likelihoods. I provide theoretical support for this algorithm and apply

the method to several monetary policy models, to show its relevance in policy analysis.

The methodology finds that, in set-identified models, parameters of primary interest like

impulse responses can have very different implications based on the prior, even within the

same class. Additionally, optimal monetary policy rules could vary with the choice of prior

within that class, particularly when historical policy parameters are not identified.
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1 INTRODUCTION

1 Introduction

There are several factors that make Bayesian methods particularly attractive to macroeconomists for

the estimation of structural models. A key reason is that the Bayesian framework allows researchers

to incorporate their prior knowledge about parameters directly into the estimation process of the

model. This is particularly useful in macroeconomics, where the available sample sizes tend to be

shorter. With a given prior, researchers can draw from a posterior distribution without having to

worry about identification issues; in fact, (Lindley, 1972, p.46) concludes “that unidentifiability

causes no real difficulty in the Bayesian approach.”

However, standard Bayesian inference can be problematic in models that are not point-

identified (Poirier, 1998; Gustafson, 2009; Moon and Schorfheide, 2012; Morris, 2014). For example,

Moon and Schorfheide (2012) find that any choice of priors would result in Bayesian highest-

posterior-density sets that are asymptotically strictly smaller than the true identified set. Conse-

quently, the results obtained from the standard Bayesian approach may be prone to inconsistency:

the posterior mean can fail to converge to the true value, and its probability limit is sensitive to the

choice of prior even asymptotically. Giacomini et al. (2019) also argue that a precise specification

of a prior could be a poor representation of the belief that the researcher possesses in a given

application. Given that the conditional (on the reduced-form parameters) prior distribution does

not update with data, it is important to understand its impact through sensitivity analysis.

In this paper, I propose a robust Bayesian algorithm designed to identify the range of posterior

means across a spectrum of priors that yield the same marginal likelihood. Additionally, it finds a

robust Bayesian credible interval that guarantees a credibility level of at least 1−α over the same

class. This approach obviates the need for researchers to firmly commit to a prior; instead, they

can begin with any "reasonable" prior that has a positive density over the (possibly constrained)

parameter space. For each parameter drawn from the posterior distribution, researchers can

obtain the observationally equivalent set of this parameter and use it as a constraint to solve

an optimization problem for the upper and lower bounds of the parameters of interest η. The

final step is to find the mean and the quantile of the bounds attained across posterior draws.

This algorithm can be employed complementarily with standard Bayesian estimation methods.

Moreover, researchers using this method do not need to determine a priori whether or not the

model is identified. In fact, when the model is point-identified, the outcome will be identical to

that obtained through the standard Bayesian approach.
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1 INTRODUCTION

On the theory side, I show that the proposed Bayesian sampling scheme is valid for all set-

identified structural models. Specifically, the expected set obtained from this algorithm aligns with

the collection of all posterior expectations generated by an arbitrary choice of prior within the

aforementioned class. Therefore, researchers can apply the algorithm to conduct robust Bayesian

inference on the η without the need to run estimation for every possible prior in this class. I

also show that, under some regularity conditions, the estimated range of posterior means will

asymptotically converge to the convex hull of the frequentist identified set.

From the practical perspective, however, while it is known that estimation may exhibit in-

consistency in cases of set-identification, the implications of such discrepancies for policy making

remain less understood. In Sections 2 and 4, I show that when identification fails, policy-related

measures, like impulse response functions, and the formulation of monetary policy decisions can

be sensitive to prior choices. I apply this algorithm to multiple models to show it is useful not only

for conducting inference, also for policy-making. I start with a model in Cochrane (2011), which is

simple enough to be analytically tractable. Using simulated data, I can compare the theoretically

identified set and the estimated range of posterior means. I show that the true impulse response

may not fall within the Bayesian credible region for some priors within the class even asymptotically.

In contrast, the proposed algorithm performs well in estimating the frequentist identified set, even

with small sample size. Then I work with a more economically meaningful class of small-scale

DSGE models, sometimes referred to as the three-equation New Keynesian model. In particular,

I work with models based on Galí and Gertler (1999) and An and Schorfheide (2007) with i.i.d.

shocks, auto-correlated shocks, and a variant with a cost-push shock. These three examples, albeit

similar in structure, have very different policy implications. First, in the presence of temporary

shocks, parameters may remain unidentified while impulse responses are clearly identifiable. With

serially correlated shocks, local identification fails but does not affect the optimal monetary policy.

Lastly, in the variant featuring a cost-push shock, the uncertainty of parameters leads to ambiguity

in the optimal policy. I also apply my method to Smets and Wouters (2007) to show its capability of

dealing with larger models.

Literature: This paper is most closely related to the literature on identification in DSGE

models.1 In a pioneering paper, Canova and Sala (2009) summarize different identification issues

that DSGE models can have and propose diagnostics to detect identification deficiencies. Iskrev

1There is a body of research exploring inference in weakly-identified DSGE models (Guerron-Quintana et
al. (2013), Qu (2014), and Andrews and Mikusheva (2015)), alongside a distinct yet related line of work on
sensitivity analysis in point-identified DSGE models (Müller (2012) and Ho (2022)).
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1 INTRODUCTION

(2010) provides the sufficient conditions, whereas Komunjer and Ng (2011) and Qu and Tkachenko

(2012) provide the necessary and sufficient conditions for local identification taking different

paths. Komunjer and Ng (2011) perform analysis from the state-space characterization, and Qu

and Tkachenko (2012) use a frequency domain approach. Koop et al. (2013) also propose two

Bayesian identification indicators to check local identification. Andrews and Mikusheva (2015), Qu

and Tkachenko (2017) offer a more general framework to check global identification by assessing

the Kullback-Leibler distance between two parametrizations of DSGE models through numerical

approximation methods.

Kociecki and Kolasa (2018) offer an alternative theoretical framework of global identification

based on results from Komunjer and Ng (2011). They build a polynomial equation system to

characterize the observationally equivalent state-space parameters. Kocięcki and Kolasa (2023)

extend this characterization of solutions and solve them analytically by finding all the roots of

a system of polynomial equations. Qu and Tkachenko (2012) also attempt to evaluate the “non-

identification curve”, but their method is computationally demanding and can trace only local

identification failures. All these studies focus on checking identification at a given parameter value.

In this paper, I propose an easy-to-implement Bayesian algorithm for finding the identified set of

parameters consistent with the data. In situations where identification failure is well-understood—a

strong assumption from the outset—researchers can opt to revise the model by either incorporating

more shocks or calibrating specific parameters to achieve point-identification. However, such

practices can be somewhat ad hoc and may deviate from the original theoretical framework. The

algorithm proposed in this paper allows researchers to understand better the identification power

and informativeness of model assumptions and data. More importantly, when the model is point-

identified, the estimation results will be the same as those of standard Bayesian methods. That is,

the algorithm proposed in this paper does not have any cost beyond the computation burden. It is

also a valuable tool for separating information in the data from any prior input that is not revised

by the data.

This paper also speaks to both the partial identification and the robust Bayesian literature.

The literature on frequentist analysis of set-identified models is large. It dates back to Hurwicz

(1950), followed by the seminal work of Manski (1995), and many more recent papers, such

as Horowitz and Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov et

al. (2007), Beresteanu and Molinari (2008), Stoye (2009), Andrews and Soares (2010), Romano
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1 INTRODUCTION

and Shaikh (2010), Beresteanu et al. (2011) and Kaido et al. (2019).2 At the same time, there is

an increasing literature on (quasi-) Bayesian analysis for set-identified models, e.g., Moon and

Schorfheide (2012), Norets and Tang (2014), Baumeister and Hamilton (2015), Kline and Tamer

(2016), Chen et al. (2018), Liao and Simoni (2019), Florens and Simoni (2021). The idea of

incorporating uncertainty within the prior distribution traces its roots to works like Good (1950)

and Robbins (1951) in the field of statistics.3 This concept has been recently adopted in economics

to conduct Bayesian inference in set-identified models (Giacomini et al. (2019), Giacomini and

Kitagawa (2021), Ke et al. (2022), Giacomini et al. (2022), and Bacchiocchi and Kitagawa (2022)).

While the robust Bayesian literature explores various aspects of robustness, my focus in this paper

is on priors that yield identical marginal likelihoods, rendering them indistinguishable based solely

on the model and input data. Moreover, additional constraints can be imposed to refine the class of

priors, providing greater flexibility in the sensitivity analysis.

A key contribution of this paper is that it introduces a new Bayesian estimation technique

and a tool for sensitivity analysis to structural models, applicable even when the links between

structural parameters θ and reduced-form parameters4 or the data are intractable. It has both

the computational advantage of Bayesian methods, allowing researchers to guide the estimation

with their prior knowledge, and a frequentist interpretation asymptotically. In the applications

of this paper, I borrow the observational equivalence characterization from Kocięcki and Kolasa

(2023) to perform robust Bayesian estimation in DSGE models. However, this estimation method is

applicable to any structural model, whether point or set-identified, provided that the observationally

equivalent set of a given parameter can be computed. When the mapping between θ and the

reduced-form parameter is analytical, as is the case in the context of SVAR models, Giacomini and

Kitagawa (2021) suggest proposing a prior distribution over the reduced-form parameters and then

obtaining a range for the parameters of interest η from the inverse mapping of the posterior draws.

However, for models lacking a clear reduced-form parameterization, such as DSGE models,5 this

method is not feasible. It is because the highly structural nature of DSGE models often precludes

the possibility of deriving a straightforward, closed-form likelihood function based on structural

parameters. Instead, I sample from the posterior of θ and directly obtain observationally equivalent

2See Molinari (2020) for a review.
3See Berger (1990) for a review.
4Here reduced-form parameters are by definition always identified, see Section 3 for a formal definition.
5In DSGE models, the spectral density of observed variables or the set of observationally equivalent θs

might serve as the point-identified parameter, which can be infinite-dimensional.
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sets of θ from those draws. I then optimize within these sets to establish the bounds for η. I then

show that averaging these sets, based on a specific prior, captures the entire range of posterior means

of η for a class of priors defined by that prior. The estimated set will converge to the frequentist

identified set of η consistent with the data. Another contribution of this paper is it provides new

insight for policy sensitivity analysis in DSGE models using robust estimation results, while in

finite sample still respect the given prior up to its data implication. Therefore, the intent of this

paper is not to join the debate over choosing between single or multiple priors for set-identified

models; rather, it is to provide a new Bayesian inference methodology that performs well in finite

samples, and is consistent with frequentist approaches asymptotically, while also providing a robust

tool for sensitivity analysis conducive to effective policymaking.

The rest of this paper is organized as follows: Section 2 presents the motivations for this study,

showing that the parameter estimates, impulse response functions, and optimal policies can all

be sensitive to the choice of priors regardless of sample size in set-identified structural models.

In Section 3, I first illustrate the structure of a typical DSGE model and a crucial identification

condition to the proposed algorithm. Then I set up the robust Bayesian framework, propose an

algorithm to conduct robust Bayesian inference for DSGE models, and show key theoretical results

supporting this algorithm. Section 4 discusses examples from section 2 under the robust Bayesian

setting. Section 5 concludes the paper.

2 Motivation

Estimation and inference in structural models that are rich in parameters and have complicated

model structures can be challenging. While the Bayesian approach offers a partial solution by

applying regularization with priors and using integration instead of optimization, little is known

about the sensitivity of the estimation results when the model is not identified. Furthermore, the

impact of non-identification on inference drawn from these estimations and its implications for

policy analysis is yet to be fully understood.

The following example illustrates an identification failure, with a formal definition provided

in Section 3.

Example 1 (A White-noise Process) Consider the following stochastic process,

Yt =Dεt , εt ∼N (0, Inε ),
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2.1 Parameter Estimation 2 MOTIVATION

where Yt is a vector of observed variables at time t, and D is the coefficient matrix. What can be identified

from the data (i.e., the reduced-form parameter) in this model is E
[
YtY

′
t

]
=D0D

′
0, where D0 is the true

coefficient. Without further assumptions, one can pick any D̄ =D0Q, with Q an orthonormal matrix, and

still have the same covariance D̄D̄ ′ =D0D
′
0. Therefore, D is not identified.

It will become clearer later that using an arbitrarily informative prior distribution on D,6 the

posterior mean or mode of D can lead to a substantial divergence of D’s posterior mean or mode

from the actual D0, especially when the prior mean or mode is considerably distant.

In this section, I examine two simple examples to show that in set-identified models, estimation,

inference, and policies made based on standard Bayesian results can be sensitive to the choice of

priors, regardless of sample size. To address this issue, I propose an algorithm to perform Bayesian

estimation and inference that is robust to the unrevisable component of the prior.

Although the work of Kocięcki and Kolasa (2023) allows, for a given parameter value, compu-

tation of the collection of all parameters that induce the same distribution of the data, it is not clear

how that method could help researchers find the set of parameters supported by both the model

and the data. One possibility is to apply their procedure with the maximum likelihood estimator. I

suggest the Bayesian alternative that has a preferable finite-sample interpretation (see Theorem 2).

2.1 Parameter Estimation

One direct interpretation of parameter estimates is that they indicate what values with underlying

economic meanings are supported in historical data. Consider the simple monetary policy model

introduced in King (2000), and thoroughly discussed in Cochrane (2011). Solving the model results

in the following AR(1) form:

πt = ρπt−1 −
1

φπ − ρ
εt , εt ∼N (0,σ2

e ), (1)

where πt is the inflation rate, εt is the shock term of an AR(1) monetary policy disturbance, ρ is the

correlation coefficient, φπ is the Taylor rule parameter, and σe is the standard error of the monetary

policy shock. Only πt is assumed to be observed. Here the structural parameters to be estimated

are stacked in a vector θ = (σe,φπ,ρ); the autocorrelation function identifies
(
ρ, σe
φπ−ρ

)
.

In the rest of this section and in Section 4, the exercises of application to different models are

done in the following way. First, start with a set of “true” values and model specifications, simulate

6This holds true even when a Haar prior, covering all possible rotations, is applied.
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2.1 Parameter Estimation 2 MOTIVATION

a sample of 200 periods,7 and save the generated observed variables. Following this, I estimate the

parameters from the generated data, undertake a standard Bayesian analysis, and then evaluate

these results in comparison to the predefined "true" values.

I run a standard Bayesian estimation of the parameters σe, φπ, and ρ in Dynare (Adjemian et

al. (2024)), using the “uninformative prior” such that the priors of the parameters are uniform and

independent. The reported local identification results from embedded methods based on Iskrev

(2010), Komunjer and Ng (2011), and Qu and Tkachenko (2012) confirm that local identification

fails because σe and φπ are pairwise collinear.

Intriguingly, the posterior mean of (σe,φπ) does not align with the actual parameter values, as

illustrated in Table 1. The posterior modes (maximum a posteriori estimator, or MAP) also fail to

be close to the true values. In addition, the Bayesian credible regions of (σe,φπ) do not cover the

true values. 8

Figure 1 shows that the marginal posterior distributions for φπ and σe deviate notably from

their prior distributions, which might be mistakenly interpreted as they are separately identified.

However, a careful inspection of the likelihood function in terms of σe and φπ (fixing ρ at its true

value ρ0) shows that the likelihood achieves its maximum near the line σe = φπ − ρ0, and it is flatter

near the maximum region when both values are high (see Figure 4 in Appendix B). Indeed, this

scenario highlights the limitation of relying on a comparison of marginal priors and posteriors for

gaining insights into parameter identification. The phenomenon of data-based learning about the

identified parameters can “spill over” onto the unidentified parameters is also documented in Koop

and Poirier (1997), Koop et al. (2013).

In this particular example, the identification failure is stark and straightforward to detect. Yet,

with an increase in the number of estimated parameters and the model becoming more complex

to solve, examining the likelihood function for model identification becomes impractical. This

also renders the visual inspection or "eyeballing" approach ineffective for identifying the set of

structural parameters.

As is mentioned above, the results are robust to the sample size, the number of posterior

draws and replications. I also perform an exercise to explore the behavior of the posterior mode,

7Assuming monthly data, this equates to approximately 16 years of observations, which is considered a
reasonable sample size for DSGE model estimations. Additionally, I conducted the same exercise with 500
periods and 1000 periods and the findings and conclusions drawn from these larger datasets are similar to
those using 200 periods. These additional results are documented in the supplementary materials.

8For this study, I generate Markov chains with a length of 100,000, but the key attributes remain
unchanged even when extending the chain length to 1 million or more.
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Figure 1: Prior and posterior for the Cochrane model. The red dashed line represents the
true values; ρ is the correlation coefficient, φπ is the Taylor rule parameter, and σe is the
standard error of the monetary policy shock.

Table 1: Prior and posterior distribution of structural parameters, from a single run of the
MCMC procedure on one sample

True value Prior distribution Posterior distribution
Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

σe 1 Uniform 4 2.02 1.85 4.43 1.95 6.77
φπ 1.8 Uniform 4 1.73 2.51 4.91 2.78 7.00
ρ 0.8 Uniform 0.75 0.09 0.81 0.81 0.74 0.87

minimizing the negative log likelihood, penalized by the prior, with 1000 replications and a sample

size ranging from 100 to 1000 observations.9 As can be seen in Figure 5 and Figure 6 in Appendix

B, the pattern illustrated above using MCMC is not Bayesian-specific.

2.2 The Impulse Responses

Following the discussion of estimation sensitivity in the previous section, a natural question arises:

Could this sensitivity impact our policy analysis? The answer is affirmative. For instance, impulse

response analysis, a tool frequently used in macroeconomic policy analysis, may also be vulnerable

to such estimation sensitivities. Impulse responses can be generally defined without reference to

the data-generating process as the following function (Koop et al. (1996), Potter (2000)):

IR(t, s,δ) = E(yt+s | εt = δ;ωt−1)−E(yt+s | εt = 0;ωt−1), s = 0,1,2, . . . , (2)

9Because the objective function always has infinite minimizers, I use the particle swarm optimizer
embedded in MATLAB with a uniform randomization of the starting points of particles around the prior
mean, the minimizer reported is also random. Moreover, the reported numerical minimizers “picked” by the
algorithm with many runs should reflect the shape of the objective function.
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2.3 Monetary Policy 2 MOTIVATION

where yt+s is the variable of interest at time t + s, εt is the exogenous shock, δ is the size of the shock

with the same dimension as εt, and ωt−1 is a particular realization of the information set available

up to time t − 1, Ωt−1.

In this exercise, I compute the impulse responses of inflation πt to a 1-unit change10 in

monetary policy shock. To do that, I first compute the posterior mean and standard Bayesian

confidence interval of impulse responses using two priors. One is the uniform prior used above,

denoted as p1(θ). The other prior p2(θ) is constructed in a way such that it always has the marginal

likelihood regardless of the realization of {πt}Tt=1.11 In Figure 2, I plot the true impulse response

function of 20 periods with a 1-unit shock of ε at time 0. The Bayesian credible region, or the 90%

highest-posterior-density interval, does cover the true impulse response function using p2(θ) but

not p1(θ), when the parameters are not identified. This example also demonstrates how, in addition

to parameter estimation, standard Bayesian inference for parameters of interest can be misleading

in set-identified models.

2.3 Monetary Policy

The next example, adapted from An and Schorfheide (2007), modifies only the total factor pro-

ductivity shock to a cost-push shock, akin to the scenario described in (Galí, 2015, Chap. 5).

As discussed in Section 4, introducing a cost-push shock breaks the divine coincidence, thereby

rendering the policy response sensitive to estimates.

yt = Et

[
yt+1

]
− 1
σ

(it −Et [πt+1]) + gt −Et
[
gt+1

]
(3)

πt = βEt [πt+1] +κ
(
yt − gt

)
+ut (4)

it = ρRit−1 +
(
1− ρR

)
ψππt +

(
1− ρR

)
ψy

(
yt − gt

)
+ εR,t (5)

ut = ρuut−1 + εu,t (6)

gt = ρggt−1 + εg,t . (7)

Here πt is the inflation rate, it is the nominal interest rate, yt is the output gap, gt is the

10In the literature, it is more common to apply a shock that equals one standard deviation of the innovation
term for impulse response analysis. However, for the purpose of illustrating the identification problem, I use
a normalized unit shock in this simple example.

11The marginal likelihood for {πt}Tt=1 given prior p(θ) is p(π) =
∫
p(π|θ)p(θ)dθ. It is also sometimes referred

to as the prior predictive distribution.
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2.3 Monetary Policy 2 MOTIVATION

(a) Impulse responses using prior setup 1

(b) Impulse responses using prior setup 2

Figure 2: The impulse response functions (IR) of inflation π to a one-unit shock in the
Cochrane model; 20 periods of impulse responses are plotted. (a) uses the uniform prior,
(b) uses prior 2 that has the same marginal likelihood.
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3 THEORY

λ = 1
3 λ = 1 λ = 3 λ = 10 λ = 30

(ψπ,ψy) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ)
(1.5, 0) X X X X X

(1.5, 0.125) X X X X X

Table 2: Policy comparison under different prior distributions and weights. The check
mark indicates that, for each prior distribution pi(θ), where i = 1,2, the policy associated
with it results in a lower welfare loss according to its posterior.

government spending shock, εR,t is the monetary policy shock, and ut is the cost-push shock. The

structural parameters to be estimated are the inverse intertemporal elasticity of substitution σ ;

composite parameter κ, which denotes the slope of the new-Keynesian Phillips curve; ψπ and ψy ,

which are the strength of the interest rate response to deviations of inflation or the output gap

from their target levels, respectively; autoregressive coefficients ρR,ρg ,ρu ; and standard deviations

σR,σg ,σu . They are all stacked into a vector θ = (σ,κ,ψπ,ψy ,ρR,ρg ,ρu ,σR,σg ,σu), and discount

factor β is calibrated at its true value. I use two different priors in this example. The first prior is the

same as that of An and Schorfheide (2007), except the total-factor productivity shock’s parameters

are replaced by the cost-push shock. As in the previous example, I generate another posterior

distribution with the same posterior predictive distribution as that of the first prior.

Imagine that the policy maker is trying to choose between two policy parameter combinations,

(ψπ,ψy) = (1.5,0) and (ψπ,ψy) = (1.5,0.125), to determine whether the monetary policy should

respond to the output gap to minimize the welfare loss of the form λπ2
t + y2

t , where λ is the relative

weight on the inflation. Table ?? shows the optimal policy choices under different priors across

different weights.

Although the optimal parameters agree under both priors for most weights, they are different

when the weight on inflation in the objective function is three times the output gap.12 That is, a

researcher with p1(θ) will disagree with a researcher who uses p2(θ) in optimal policy choices, even

though their models are the same and their priors induce the same marginal likelihood.

3 Theory

In this section, I first lay out the theoretical framework for set-identified structural models and

introduce the corresponding algorithm. Next, I define the class of priors that underpins the

12The feature that the optimal policy is sensitive to the choice of priors does not appear only at λ = 3; it
holds for λ values approximately between 2 and 6.
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sensitivity analysis and discuss various properties of this class. In the final subsection, I show that

the algorithm gives interpretable results in finite samples and describe its asymptotic properties.

3.1 Framework

Let (Y,Y ) be the measurable space of a sample of observables Y ≡ {Yt}Tt=0 ⊂ Y, and let (Θ,A) be the

measurable space of a structural parameter vector θ ∈Θ ⊂R
d . There exists a regular conditional

distribution F(y | θ), and density p(y | θ) of Y given θ, which represents the likelihood function.

The concepts of observational equivalence and identification are defined as follows (Rothenberg

(1971)):

Definition 1 (Observational Equivalence) Given a model with likelihood density p(y | θ), θ and θ̄

are observationally equivalent if p(y | θ) = p(y | θ̄) for all observed data y ∈ Y. It can also be written as

θ ∼ θ̄.

By definition, this observational equivalence is an equivalence relation that possesses reflexivity,

symmetry, and transitivity. It partitions the space Θ into equivalent classes, independent of the

data.

Definition 2 (Identification) Given a model, the parameters θ of the model are identified if there exists

no other θ̄ ∈Θ observationally equivalent to θ.

Definition 2 is sometimes referred to as global identification.13

For any given θ, I can define the observationally equivalent set by a mapping K : Θ→F ⊂ 2Θ

such that K(θ) ≡ {θ′ : θ′ ∼ θ}, and F is the family of closed subsets of Θ. Without further

assumptions, K characterizes the indices that dictate the likelihood, i.e., p(y | θ) = p(y | θ̄) for all

y ∈ Y if and only if K(θ) = K(θ̄) (see, e.g., Barankin et al. (1960)). It immediately follows that θ ∼ θ̄

if and only if K(θ) = K(θ̄).

In contrast with Giacomini and Kitagawa (2021), who work with the reduced-form parameters

or minimal-sufficient parameters directly,14 there is no consensus regarding the definition of

13If I replace “θ̄ ∈Θ” with “θ̄ ∈ Nr (θ) for some neighborhood of θ”, I have the notion of local identification.
14Let θ ∈ Θ be the structural parameters. If there exists a continuously differentiable function φ = g(θ)

that maps a neighborhood of θ to a subset of Rr such that p̃(y | φ) = p(y | θ) for all y ∈ Y and θ ∈Θ for some
function p̃(y | φ) and if, in addition, φ is globally identified, then φ is called a reduced-form parameter.
Identification analysis in econometrics normally proceeds as follows: first, find the reduced-form model
representation where the parameters are always identified, and then disentangle the link between structural
parameters and reduced-form parameters. See, for example, Koopmans (1949); Koopmans and Reiersol
(1950); Barankin et al. (1960); Picci (1977); Dawid (1979); Florens and Simoni (2021); Giacomini and Kitagawa
(2021) for more discussion.
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reduced-form parameters some models, like DSGE. The agnostic nature of the mapping K caused

by model complexity makes it hard to apply the methodology of Giacomini and Kitagawa (2021)

here. With a slight abuse of notation, I will use K to denote both the mapping and a generic mapped

element in F , which is a subset of Θ.

Researchers are primarily interested in estimating the structural parameter vector θ, or

transformations of θ, denoted as η(θ), through a measurable function η : (Θ,A)→ (H,D), H⊂R
q

for some q <∞. Examples include a particular policy parameter or a finite-period impulse response.

More generally, η can be the optimal-choice parameters of a policy rule that minimizes some

welfare loss. For example, in a basic New Keynesian model (Galí (2015)), an interest rate rule

it = rt +φππt +φyyt with natural rate rt can be used to minimize welfare loss in terms of output gap

and inflation of the form

LW (θ,y,π) =
1
2
Et

∞∑
s=0

βs
[
ay2
t+s + bπ2

t+s

]
, (8)

and η = argminφπ ,φy LW . η may also depend on the initial condition if the welfare loss is conditional.

Detailed applications are shown in Section 4. In that case, η is also a function of state variables.

Figure 3 illustrates the graphical connection between these parameters.

Several challenges can arise in the estimation and inference of highly-structural models. Firstly,

researchers often apply priors to structural parameters and derive likelihoods by solving the model,

which can lead to non-trivial prior distributions over the parameters in the solution. Second,

some commonly used structures used to generate the likelihood (e.g., the parameters of state-

space structure, or the so-called ABC representation) may not identified. That disqualifies those

parameters from being considered as reduced-form parameters. As a result, even with an injective

mapping of the structural parameter vector θ to these coefficients, the Bayesian estimation of θ can

still be sensitive to priors. Third, even if researchers have well-defined reduced-form parameters,

it could still be challenging to back out all the θs that map into the same reduced-form, because

the mapping from structural parameters to reduced-form parameters is model-specific and often

numerical. Luckily, there is still a rich class of models that allows researchers to find the K(θ), even

analytically. Therefore, for models that conform to this structure, and further assuming that K(θ)

can be found for every given θ, I propose the following algorithm for estimation and inference:

Algorithm 1 (Robust Bayesian)

S.1 Specify a prior πθ. Use standard Bayesian methods to obtain πθ|Y .

S.2 Sample M draws from πθ|Y . For each draw θj , compute its observationally equivalent set K(θj ).

14
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Θ

F

H

θ

K(θ)

η(θ)

structural parameters

parameters of interest
(e.g. impulse response)

observational equivalence set

Y
data

given prior πθ, update through likelihood p(y | θ)
and yield posterior πθ|Y

Figure 3: Connections between parameters

S.3 Optimize over K(θj ) to find the minimum or maximum value of η, denote as ηj , and ηj .

S.4 Find the mean and the quantiles (e.g., 5% for ηj and 95% for ηj) of ηj and ηj across draws. Report[
1
M

∑M
j=1η

j , 1
M

∑M
j=1η

j
]

and
[
q∗

0.05
,q∗0.95

]
as the set of posterior mean and robust Bayesian credible

region.

The algorithm above is widely applicable so that the researchers can fit many structural models

such as structural vector autoregressive models (Giacomini and Kitagawa (2021)), latent Dirichlet

allocation (Ke et al. (2022)), SVMA models (Plagborg-Møller (2019)), DSGE models, and various

other structural models into this framework.

3.2 Class of Priors

Several important questions remain to be addressed: What exactly is the class of priors that is being

discussed so far, and why this class specifically? It is also unclear how the choice of priors affects the

posterior mean and credible region under set-identification. In this subsection, I establish the need

for multiple priors, justify the choice of this particular prior class, and show how the sensitivity of

estimation is connected to identification failure of the model.

In a Bayesian world, the unknown structural parameters θ are assumed to be (Θ,A)-valued

random variables, defined on a probability space. Let πθ be a prior distribution of θ, which can be

a belief of the researcher or elicited information from micro evidence. When researchers have no

knowledge about specific parameters, they typically adopt uninformative priors. However, The
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fact that researchers cannot discriminate one θ from another does not mean the two points have

equal prior probability. In that sense, a flat prior does not equal non-informativeness. As Fisher has

argued, “Not knowing the chance of mutually exclusive events and knowing the chance to be equal

are two quite different states of knowledge” (Syversveen (1998)). Such literature that justifies the

use of classes of priors is extensive.

There are many reasons why a single prior is untenable. DeRoberts and Hartigan (1981)

stated “In practice, prior knowledge is typically vague and any elicited prior distribution is only

an approximation to the true one.” Pericchi and Walley (1991) contend that there is not a single

distribution that can model ignorance satisfactorily, hence an examination of a class of priors is

necessary. Berger et al. (1994) in their overview paper also argue that "In reality, it is very difficult

to discriminate between, say, 0.10 and 0.15 as the subjective probability, P (E), to assign to an event

E, much less to discriminate between 0.10 and 0.100001. Yet standard Bayesian axiomatics assumes

that the latter can (and will) be done."

Before introducing the class of priors considered in this paper, it is necessary to impose

some structure on the mapped elements K . Specifically, I begin by assuming measurability of the

set-valued function K , which maps Θ to the family of all closed subsets of Θ.

Assumption 1 (i) The equivalence mapping K : Θ→ F is Effros measurable, that is, K−(F) ≡ {θ :

K(θ)∩F , ∅} ∈ A for each F ∈ F .

(ii) η is a continuous function of the structural parameter θ, mapping closed elements in the space F

to F .

Under Assumption 1 ((i)), K is called a random closed set in Θ. The corresponding prior πK of K(θ)

for a given πθ (also denoted as the push-forward measure of πθ, K∗πθ) can then be defined by

πK (B) = πθ
({
θ : K(θ) ∈ B

})
for any B ∈ B(F ), (9)

where B(F ) is the σ -algebra generated by the Fell topology on F (Molchanov (2005), section 1.1).

The likelihood of θ is flat on K(θ) for any yTt=1, that is, θ ⊥ Y | K(θ).15 Therefore, observations

of Y will not aid in determining θ given the knowledge of K(θ).

In general, the parameters spaces Θ, H can be subspaces of Rn, and K(Θ) can be a subset

15However, that does not mean that the induced likelihood of η(θ) is flat on K(θ) as well. In the most
extreme case, a parameter that is set-identified may map into a point-identified parameter of interest.
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of a Baire space,16 where the conditioned probability of K(θ) may be zero. To avoid the Borel-

Kolmogorov paradox,17 in the rest of this paper, I assume the conditional distributions πθ|K are

regular and defined based on conditional expectations. That is, πθ|K (A) ≡ E[1A(θ) | K], similarly for

πη|K . The posterior of θ, πθ|Y , can be expressed as

πθ|Y (A) =
∫
F
πθ|K (A)dπK |Y , A ∈ A. (10)

From expression (10) it can also be seen that the conditional prior of θ given K(θ) cannot be updated

by the data. The same argument also holds for the posteriors πη|Y . I refer to πK as revisable prior

knowledge, and πθ|K as unrevisable prior knowledge, à la Giacomini and Kitagawa (2021) (see also

Poirier (1998)). The following example clarifies the structure.

Example 2 Suppose researchers observe only Yi ∼N (θ1 +θ2,1), i = 1, . . . , t. Let the structural parameter

be θ = (θ1,θ2), and the equivalent set K is defined as K(θ) =
{
θ̄ = (θ̄1, θ̄2) | θ1 +θ2 = θ̄1 + θ̄2

}
. Consider

two prior distributions on θ:

πθ :

θ1

θ2

 ∼N

00

 ,
1 0

0 1


 , π̃θ :

θ1

θ2

 ∼N

 a−a

 ,
1 0

0 1


 ,

where a is a non-zero constant, and πθ and π̃θ induce the same prior distribution on K . It can be seen

from (10) that only πK |Y gets updated by {Yi}, but the conditional distributions πθ|K and π̃θ|K remain

unchanged because the data do not contain any more information than θ1 +θ2. In fact, in this example,

the reduced-form parameter exists as the sum of two elements: φ = θ1 +θ2.

When identification issues arise, the posterior of structural parameters integrates unrevisable

prior belief over observationally equivalent parameters. Since this part of prior belief remains

unaltered by the data, its influence persists even asymptotically.

In this paper, rather than requiring researchers to adhere to a single (conditional) prior, I

consider the prior class in the following sense:

16This space is still a Polish space equipped with a Borel σ -algebra. Hence there exists a regular conditional
distribution.

17In probability theory, the Borel–Kolmogorov paradox suggests that conditional probability with respect
to an event of probability zero can be indeterminate or ill-posed.
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Definition 3 (Conditional Prior Class) Given a πK supported only on K(Θ), the classes of conditional

priors for θ given K are

Πθ|K =
{
πθ|K : πθ|K

({
θ : K(θ) = K

})
= 1,πK − almost surely

}
. (11)

This class encompasses any conditional priors that assigns a probability one to the equivalent set,

conditional on that same set. Given a prior distribution over the equivalent sets πK , this condition

prior class would then induce a class of priors for θ such that the marginal distribution for K

coincides with πK , i.e.,

Πθ(πK ) ≡
{∫

πθ|KdπK : πθ|K ∈Πθ|K

}
=

{
πθ : πθ

({
θ : K(θ) ∈ B

})
= πK (B), for B ∈ B(F )

}
. (12)

Moreover, each πθ induces a πK , thereby also uniquely defining a conditional prior class. In

practice, When a reduced-form parameter exists and its closed-form mapping from structural

parameters are known, along with a given reduced-form prior, one can follow the approach of

Giacomini and Kitagawa (2021) by exploring the variations in (11). However, for more general

situations where only structural parameter priors are available, (12) can be employed to identify

the class of priors that yield the same marginal distribution over K .

There exists a variety of classes of multiple priors in the literature. For example, the ε-

contaminated class of priors (Berger and Berliner (1984), Berger and Berliner (1986)), the class of

priors with fixed location but different covariance matrices (Chamberlain and Leamer (1976), and

the class of extended priors based on distributions near π0, and a conditional distribution over its

neighborhood πc(N (θ)|θ) (Lavine (1991)). In contrast to the aforementioned classes, this paper

focuses on a prior class tailored for set-identified models, offering both theoretical and practical

advantages. First, it naturally extends from a single prior to a prior class for set-identified models,

and it simplifies to the single given prior Πθ(πK ) = {πθ} in point-identified situations. This class

is tractable, encompassing all conditional priors that assign probability 1 to the equivalence set

K(θ). However, it also allows further refinements that can be imposed on the conditional priors,

such as bounds on the parameter space. For practitioners, it simplifies the process, requiring just

one prior over structural parameters without additional hyperparameters.18 The defining prior

18Specifically, it eliminates the need to define the radius of the neighborhood around the benchmark prior.
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of this class, πK , is determined by the push-forward measure of πθ, making the computation of

πK unnecessary. Moreover, any other prior π̃θ within the same class can be sampled by redrawing

from the observational equivalent set K(θ) of a given draw θ from prior πθ. Lastly, the class has an

economic implication of the class that generates the same prior/posterior predictive distribution

(Geweke and Whiteman (2006), Geweke (2007), Del Negro and Schorfheide (2008), Weitzman

(2009)). Therefore, it is impossible to evaluate one prior against another within the same class using

only the model and its input. The following lemma formalizes this fact.

Lemma 1 (Prior Predictive Distribution) For any given model and prior πK , the prior predictive

distribution defined as

p(y) =
∫
Θ

p(y | θ)dπθ

is constant across πθ ∈Πθ(πK ) for all y.

The lemma applies similarly to the posterior predictive distribution. Meanwhile, if researchers

possess insights from economic theory or other sources that can further refine the conditional prior

class, these refinements can be easily adopted in Algorithm 1 either by resampling from K(θj ) or by

narrowing the set in step S.2.

3.3 Robust Posterior Distributions

With the prior class defined, we can then explore the variation of posterior probabilities, means,

and quantiles of the parameters of interest within this class.

Given the conditional prior class Πθ|K and a posterior over K , πK |Y , the class of posteriors for

the parameters of interest follows

Πη|Y =
{
πη|Y (·) =

∫
F
πθ|K

(
η(θ) ∈ ·

)
dπK |Y : πθ|K ∈Πθ|K

}
. (13)

For any D ∈ D, the lowest and highest possible probabilities, denoted by πη|Y :D→ [0,1] and

πη|Y :D→ [0,1] are

πη|Y (D) ≡ inf
πη|Y ∈Πη|Y

πη|Y (D), (14)

πη|Y (D) ≡ sup
πη|Y ∈Πη|Y

πη|Y (D). (15)

The lower and upper posterior probabilities outlined here serve as robust bounds on the
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probability of a particular set, indicating the minimum and maximum probabilities of D attainable

from Πθ|K regardless of the chosen πθ|K . However, computing these probabilities using the given

formulas is impractical due to the requirement of evaluating all conditional distributions within

the class. Fortunately, there are alternative methods available to circumvent this necessity. I will

start by outlining some necessary but weak regularity conditions.

Assumption 2 (Regularity) Let the prior of structural parameters θ, πθ be non-atomic on (Θ,A), and

πθ(Θ) = 1.

In the case where Θ = R
n, πθ being absolutely continuous with respect to the Lebesgue measure is

sufficient to guarantee non-atomicity. This assumption, along with those detailed in the preceding

paragraph, provide the basis for the subsequent theorem.

Theorem 1 (Lower and Upper Probabilities) For any given πθ, equivalence mapping K and contin-

uous function η, let Assumptions 1 and 2 hold. For any D ∈ D,

πη|Y (D) = πθ|Y
({
θ : η(K(θ)) ⊂D

})
, (16)

πη|Y (D) = πθ|Y
({
θ : η(K(θ))∩D , ∅

})
. (17)

Moreover,
{
πη|Y (D) : πη|Y ∈Πη|Y

}
is a connected interval, i.e., each point between the lower and upper

bound is attainable.

Theorem 1 provides a practical tool for computing the lower and upper probabilities. It bears

resemblance to Theorem 1 in Giacomini and Kitagawa (2021), wherein the inverse mapping from the

reduced-form parameter to the structural parameter is extended to the equivalent set. Assumption

1 and the continuity of η ensure that K(θ) and η(K(θ)) are random closed sets. The proof can be

found in Appendix A.

The robust probabilities (16) and (17) are called the containment functional and the capacity

functional of a random set (Molchanov and Molinari (2018)), respectively. Morever, they correspond

to special cases of a belief function and a plausibility function, respectively, in the imprecise

probability literature (Walley (1991)).

3.3.1 Robust Posterior Mean

In standard Bayesian analysis, researchers are particularly interested in the expectation of parame-

ters of interest and its credible region. In this section, I show that the results from Algorithm 1 has
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a finite-sample interpretation: it reports the range of posterior means of the parameters of interest

from a prior class.

Before introducing the main theorem, I present a lemma that establishes a connection between

the distribution of the K-transformed posterior draws of θ and the draws from the posterior of

K∗πθ.

Lemma 2 The push-forward measure of πθ|Y by a measurable multifunction K : Θ → F , written as

π̃K |Y = K∗πθ|Y , coincides with the posterior distribution πK |Y of the push-forward measure πK = K∗πθ.

The proof can be found in Appendix A. This lemma, which generalizes the result in Ke et al. (2022)

Appendix C without assuming a parametric structure of K , states that two distinct methods of

obtaining posterior draws of equivalent sets yield identical results. For simplicity in notation and

proof throughout the rest of the paper, we will regard the parameter of interest η as a scalar.19 The

main theorem of this paper is stated below.

Theorem 2 (Posterior Means of Scalar η) For a given πθ, let Assumptions 1 and 2 hold. Define:

η∗(θ) = sup
θ′∈K(θ)

η(θ′), η∗(θ) = inf
θ′∈K(θ)

η(θ′).

Then, the set of posterior means is characterized by

sup
πθ|Y ∈Πθ|Y

Eθ|Y
[
η(θ)

]
= Eθ|Y

[
η∗(θ)

]
, inf

πθ|Y ∈Πθ|Y
Eθ|Y

[
η(θ)

]
= Eθ|Y

[
η∗(θ)

]
,

where Πθ|Y collects the posteriors of Equation (12) with given πK = K∗πθ.

This theorem states that if a researcher selects a prior πθ, draws from its posterior, and

computes the expected lower and upper bounds of η within the observationally equivalent θs, then

it is tantamount to computing all posterior means within the same class of πθ. The expectation

of η∗(θ) and η∗(θ) under the distribution πθ|Y is feasible because it needs draws only from one

distribution.

Intuitively, Theorem 2 holds because πθ serves solely to define the prior class. Even if πθ

contains some unrevised conditional prior of θ | K , this information becomes irrelavant during the

19This still encompasses a wide range of interesting cases. For example, although impulse responses can be,
in principle, infinite-dimensional, researchers are more often than not interested in the pointwise coverage
probability at each time period than in the overall coverage of an IRF. The theoretical results can be easily
extended to scenarios beyond scalar cases.
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computation of the equivalence set K(θ) in step S.2 of Algorithm 1. The posterior of K is unaffected

by this conditional prior and will be updated by data. As a result, knowing the observationally

equivalent sets K(θ) and its posterior distribution is the same as knowing the class of all posterior

distributions based on πθ|Y . Therefore, the posterior distribution of the identified set is the same.

3.3.2 Robust Credible Region

For the purpose of inference, this section introduces the robust Bayesian counterpart of the posterior

mean and credible region in standard Bayesian inference. For α ∈ (0,1), let a robust Bayesian

credible set be such that the posterior lower probability is greater or equal to 1−α. That is,

πθ|Y

({
θ : η(K(θ)) ⊂ Cα

})
≥ 1−α, (18)

This definition aligns with those found in Moon and Schorfheide (2012), Norets and Tang (2014),

and Kline and Tamer (2016), but is not uniquely determined as the volume-optimized credible set

definition of Giacomini and Kitagawa (2021). In the scalar case for η, when the set Cα is further

constrained to be convex, one approach to determining a robust credible set involves finding the

smallest q ∈R such that

inf
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
≥ 1− α

2
(19)

and the largest q where

sup
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
≤ α

2
. (20)

In fact, it can be shown that

q∗1−α/2 : πθ|Y
(
η∗(θ) ≤ q∗1−α/2

)
= 1− α

2
, (21)

and

q∗
α/2

: πθ|Y
(
η∗(θ) ≤ q∗

α/2

)
=
α
2

(22)

solve Equations (19) and (20). Consequently, a desired robust credible region is [q∗
α/2
,q∗1−α/2], with

inf
πη|Y ∈Πη|Y

πη|Y

([
q∗
α/2
,q∗1−α/2

])
≥ 1−α.

This result is shown in the following theorem.
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Theorem 3 For any given πθ, equivalence mapping K and continuous function η, let Assumptions 1

and 2 hold. For any given q ∈R and given prior πθ,

inf
πθ|Y ∈Πθ|Y

πθ|Y
(
η(θ) ≤ q

)
= πθ|Y

(
η∗(θ) ≤ q

)
and

sup
πθ|Y ∈Πθ|Y

πθ|Y
(
η(θ) ≤ q

)
= πθ|Y

(
η∗(θ) ≤ q

)
.

The proof of this theorem is a direct result of Theorem 1. Details are also presented in Appendix A.

3.3.3 Asymptotic Properties

Transitioning from our discussion on finite sample interpretation in the previous section, we now

turn our attention to asymptotic analysis. The results provided in this section allow us to connect

our Bayesian results with frequentist perspectives.

In the scalar case, we can always truncate η(K(θ)) by some upper and lower bounds, ensuring

integrability without much loss of generality.

Let θ0 be the true underlying value that generates the data. The data variable Y is super-

scripted with either the sample size T or∞ to distinguish between finite and asymptotic behavior.

Assumption 3 (i) Let max
{
|η∗(θ0)|, |η∗(θ0)|

}
< ∞, and the equivalence mapping K : Θ → F is a

correspondence continuous at θ0.

(ii) The posterior of K(θ) is consistent for K(θ0), i.e.,

πθ|Y T
({
θ : dH (K(θ),K(θ0)) < ε

})
→ 1 as T →∞, p (Y∞ | θ0) -a.s., (23)

where dH (X,Y ) is the Hausdorff distance20 between X and Y .

(iii) η∗(θ) and η∗(θ) have finite posterior variance;

Eθ|Y T

 sup
η∈η(K(θ))

|η|2
 <∞, p

(
Y T | θ0

)
-a.s. (24)

20The Hausdorff distance is defined as dH (X,Y ) = max
{
supx∈X infy∈Y d(x,y),supy∈Y infx∈X d(x,y)

}
. In the

one-dimensional η case, the Hausdorff distance between [a,b] and [c,d] is max
{
|a− c|, |b − d|

}
.
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The continuity of correspondences is defined as in Aliprantis and Kim (2006) Definition 17.2.

Assumption 3 ((i)) allows the use of maximum theorem. Assumption 3 ((ii)) states that Bayesian

estimation of the point-identified parameter gives standard consistency results. Assumption 3 ((iii))

ensures the almost-sure compactness of η(K(θ)) and permits the application of Hölder’s inequality

to bound the distance between random sets.

Theorem 4 (Consistency of Posterior Mean) Let Assumptions 1, 2, and 3 hold, and that Θ ⊂R
p for

some p <∞. Then the Hausdorff distance between the set of posterior means and the convex hull of the

true identified set goes to zero almost surely as T increases, i.e.,

lim
T→∞

dH

Eθ|Y T ([η∗(θ),η∗(θ)
])
,
[
η∗(θ0),η∗(θ0)

]→ 0, p (Y∞ | θ0) -a.s.

The proofs of Theorem 4 and Theorem 5 below follows directly from the proof of Theorem 3

and Theorem 4 in Giacomini and Kitagawa (2021), with the assumptions and conclusions tailored to

the scalar case. Theorem 4 validates the application of the algorithm by asserting that the computed

interval converges to the true identified set, provided that it is convex.

Next, I will state a set of high-level conditions under which the proposed robust credible set

will asymptotically attains greater than 1−α coverage for the true identified set, from a frequentist

perspective.

Assumption 4 (i) The true identified set η(K(θ0)) is closed and bounded, and η(K(θ)) is πθ-almost

surely closed and bounded.

(ii) The class of robust credible sets Cα consists of closed intervals in R.

Assumption 5 (i) Let θ̂ denote an element of the set of maximum likelihood estimators,

√
T

η
∗(θ)− η∗(θ̂)

η∗(θ)− η∗(θ̂)

 |Y T ⇒ N (0,Σ), as T →∞,p (Y∞ | θ0) -a.s. , (25)

√
T

η
∗(θ̂)− η∗(θ0)

η∗(θ̂)− η∗(θ0)

 |θ0 ⇒ N (0,Σ), as T →∞. (26)
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(ii) For the robust credible region
[
q∗
α/2
,q∗1−α/2

]
,

ĉT ≡
√
T

 q
∗
α/2
− η∗(θ̂)

q∗1−α/2 − η
∗(θ̂)

 p
−→ c (27)

for some constant c as T →∞.

Here, ⇒ denotes weak convergence, and
p
−→ denotes convergence in probability. Assumption 4

reduces the event η(K(θ)) ⊂ Cα to the inequalities q∗
α/2

< η∗(θ), and η∗(θ) < q∗1−α/2. Assumption 5

((i)) assumes the Bernstein-von Mises property for the support functions of the identified set in the

scalar case, without requiring the existence of a reduced-form parameter. The convergence rate is

derived from the central limit theorem for random sets (Molchanov (2005), Chapter 3, Theorem

2.1). Assumption 5 ((ii)) specifies that Cα should shrink towards
[
η∗(θ̂),η∗(θ̂)

]
.

Theorem 5 Under Assumptions 4 and 5,

lim inf
T→∞

PY T |θ0

(
η(K(θ0)) ⊂

[
q∗
α/2
,q∗1−α/2

])
≥ 1−α. (28)

Theorem 5 provides an asymptotic basis for employing algorithm-generated averaged posterior

quantiles as a robust credible set. It states that, similar to the Bernstein-von Mises theorem, the

credible set asymptotically achieves coverage exceeding 1−α for the frequentist true identified set.

3.4 DSGE Models

In this part, I shift from the general theory to a focused study of DSGE models. I start by sketching

the structure within a DSGE context, then detail the approach for estimation and inference using a

robust Bayesian methodology. The discussion on DSGE models covers their structure and outlines

the standard procedure for their estimation, which involves solving linear rational expectation mod-

els and determining the likelihood. I further present the conditions of observational equivalence

through relevant literature. In the application, I specify the class of priors utilized and examine the

performance of the proposed algorithm. This part is intended to offer a comprehensive yet concise

overview of applying the suggested method to DSGE model estimation.
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3.4.1 Setup

A DSGE model, parametrized with structural parameter vector θ ∈ Θ, can be characterized by

several Euler equations and market-clearing conditions at equilibrium. Upon linearizing these equi-

librium conditions around the steady states, the model reduces to a linearized rational expectation

(LRE) form following Kociecki and Kolasa (2018) and Kocięcki and Kolasa (2023),21

Γ0(θ)

 StPt
 = Γ1(θ)Et

 St+1

Pt+1

+ Γ2(θ)St−1 + Γ3(θ)εt , (29)

where Γi(θ), i = 0 . . .3 are matrices of coefficients that are also functions of structural parameters

θ; St , Pt , εt and ηt contain the state variables, policy variables (non-state endogenous variables),

structural shocks, and expectation errors respectively; εt can in general include sunspot shocks

in the case of infinite stable solutions to LRE, which is called indeterminacy,22 and measurement

errors when they exist. The LRE models can be solved numerically to yield a linear state-space

representation; the solution combined with measurement (without a constant term) is also known

as the ABC(D) representation (Fernández-Villaverde and Rubio-Ramírez, 2007),

St = A(θ)St−1 +B(θ)εt (30)

Yt = C(θ)St−1 +D(θ)εt , (31)

where St ∈RnS is the state vector, Yt ∈RnY is the observable vector, εt ∼N (0,Σ(θ)) has dimension

nε, A(θ) is an nS × nS matrix, B(θ) is an nS × nε matrix, C(θ) is nY × nS , D(θ) is nY × nε, and Σ(θ)

is a positive definite, nε × nε matrix. Here A, B, C, and D are the coefficients of the solution.

Representation (31) is derived from an additional solution equation Pt = F(θ)St−1 +G(θ)εt23 and a

21There are alternative representations used in the literature. For example, Blanchard and Kahn (1980)
use Γ0Et(St+1) = Γ1St + c + Ψ εt . Sims (2002) introduces endogenous forecast error ηyt ≡ yt −Et−1yt so that
Γ0(θ)St = Γ1(θ)St−1 +Ψ (θ)εt +Π(θ)ηt , which is called the canonical form. Al-Sadoon and Zwiernik (2019) use∑p
i=−qBiEt (St−i) =

∑k
i=0Aiεt−i . These forms can be transformed easily from one to another. Although some

may be the subclass of the other more general forms, they are general enough to represent almost all linear
DSGE models. I work on the form of Equation (29) because it allows researchers to operate under minimal
state representation.

22Lubik and Schorfheide (2003) have shown the stable solutions can be represented as St = ΘSt−1 +Θεεt +
Θεεt , where ε stands for structural shocks, and ε is the sunspot shocks. To keep things simple, I do not
consider the possibility of indeterminacy for the main part of this paper, and put this discussion to section 6.

23The coefficients F and G enter the likelihood of Y only through C(θ) and D(θ) and are thus irrelevant.
In addition, in the literature people do not always separate the state variables from the policy variables.
Therefore, their matrix A contains both values in A and F here.
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measurement equation with policy variables

Yt = L(θ)

 StPt
+ J(θ)εt .

Different from structural vector autoregressive (SVAR) models, this ABCD representation that

researchers work directly on is not identified in general,24 in the sense that different combinations

of (A,B,C,D,Σ) could potentially have the same data generating process. Therefore, the lack of

identification could result from the mapping from structural parameters to the state-space coeffi-

cients, or from the state-space parameters to the likelihood. Despite this, in practice, identification

concerns are typically overlooked when estimating DSGE models because researchers can still

achieve posterior distributions for structural parameters even without point-identification. How-

ever, as discussed in Section 3.3, in set-identified models, standard Bayesian estimation outcomes

are sensitive to the choice of priors regardless of the sample size. This sensitivity indicates potential

robustness issues in the estimation process and the policy conclusions derived from it.

A standard process for conducting Bayesian estimation in DSGE models can be found in Herbst

and Schorfheide (2015). This type of algorithm, although widely used, would not detect lack of

identification25 and how the results are sensitive to the choice of priors. As shown in Section 2,

relying on a prior for estimation can conceal underlying identification issues and potentially lead

to misleading posterior distributions. Ideally, priors should serve as informed starting points that

guide the estimation without dominating it. Researchers might be interested in all the inferential

conclusions that are supported by the model and the data.Therefore, an estimation and inference

method that maintains robustness against changes in priors within the class specified in (12) would

be especially valuable.

To apply Algorithm 1 to DSGE models, I have adapted the second step (S.2) from the methods

described in Kocięcki and Kolasa (2023). Further details are provided in the following section.

In the case of point-identification, each set K(θj) should be a singleton, with the reported range

consisting of a single value matching the standard Bayesian posterior mean. Therefore, there

is no loss in sharpness. The multifunction K is a composition of the mapping from structural

24See Komunjer and Ng (2011) for a reference.
25It could be argued that identification failures might be observable, as illustrated in Figure 5, where the

confidence bands for the MAP estimates remain wide for parameters that are not identified. However, this
becomes less apparent when the range of the identified set is small or when the model is only locally, not
globally, identified. Effective methods to detect global identification failure are covered in Qu and Tkachenko
(2017) and Kociecki and Kolasa (2018).
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parameters θ to DSGE state-space solutions (A,B,C,D,Σ), with some algebraic transformation, and

the mapping from the coefficients of a polynomial system to its solutions (also called a variety).26

3.4.2 Identification Conditions

A key step in Algorithm 1 is to find the observationally equivalent set of a given parameter vector.

Theoretical results on conditions to characterize parameter identification in DSGE models have

been widely studied (Iskrev (2010), Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and

Tkachenko (2017), Kociecki and Kolasa (2018), Kocięcki and Kolasa (2023)). Existing research

on DSGE model identification typically focuses on checking at specific parameter vectors, and

deriving necessary and sufficient conditions for point identification. They also offer valuable

insights into characterizing the set of observationally equivalent parameters. This paper leverages

these conditions to help identify the true set of parameters. For simplicity and when there is no

ambiguity, I will omit the explicit dependence on the parameter θ for parameters A, B, C, D, Σ,

and subsequent parameters. Therefore, Ā denotes A(θ̄), and the same applies for the notations of B̄,

C̄, D̄, F̄, Ḡ and Σ̄.

Assumption 6 (Stability) For every θ ∈Θ and for any z ∈C, det(zInS −A) = 0 implies |z| < 1.

Assumption 1 restricts {St} and {Yt} in Equations (30) and (31) to weakly stationary time series,

where the eigenvalues of A remain inside the unit circle. Under Assumption 6, Wold decomposition

applies; therefore, I can rewrite Yt in Equations (30) and (31) in the form of a VMA(∞) process

Yt+1 =
[
C(InS −AL)−1BL+D

]
εt+1, t = · · · − 1,0,1 . . . , (32)

where L is the lag operator. The implied impulse response will be

IRy(t, s,δ) =


Dδ, s = 0

CAs−1Bδ, s = 1,2, . . .
. (33)

Define P ≡ E(StS ′t), which is also the unique (under Assumption 6) solution to the Lyapunov

equation P = APA′ + BΣB′. The autocovariances of {Yt}, Γ
y
j = E(YtY ′t−j) can be expressed as Γ

y
0 =

CPC′ +DΣD ′ and Γ
y
j ≡ CA

j−1N for j > 0, where N = APC′ +BΣD ′.

26Because polynomials are continuous functions in their variables, the set of roots must be closed.
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Define the z-transform of {Yt} by

ΦY (z;θ) =
+∞∑
j=−∞

Γ
y
j z
−j . (34)

The spectral density can be achieved by setting z = eiω. It can also be written in terms of the ABCD

representation parameters ΦY (z) = H(z)ΣH ′(z−1), where H(z) = C(zInS −A)−1B+D is the transfer

function.

Assumption 7 (Stochastic Minimality) For every θ ∈Θ, the matrices defined by

O ≡ (C′ A′C′ · · · A′nS−1C′)

have full column rank and

C ≡ (N AN · · · AnS−1N )

have full row rank, i.e., rank(O) = rank(C) = nS .

Assumption 7 is the same as stochastic minimality in Kocięcki and Kolasa (2023) and auto-

covariance minimality in Komunjer and Zhu (2020). It differs from the minimality definition in

Komunjer and Ng (2011) in that the controllability27 (see for example, Lindquist and Picci (2015))

is on (A,N ) instead of (A,B), and Assumption 7 does not require the econometrician to observe εt.

Intuitively, the rank conditions for C stand for the controllability of the innovations representation

of the state-space system. The full column rank of O guarantees the observability of the model. This

assumption ensures there exists no other state-space representation that has a lower-dimensional

state-space but the same spectral density. The practicality of this assumption is also discussed in

Kocięcki and Kolasa (2023), where it is also shown that if Assumption 7 holds at one θ, it holds

almost everywhere in Θ.

From Definition 1, two structures are said to be observationally equivalent if they imply the

same probability distribution for the observables. Utilizing Gaussianity, I can characterize the

observational equivalence of parameters based on their equivalence in the spectral density function.

I assume zero intercepts in the measurement equation; however, incorporating non-zero intercepts

27The matrix pair (A,B) is said to be controllable if the matrix (B AB · · · AnSB) has rank nS . The pair
(A,C) is called observable if (A′ ,C′) is controllable. In a deterministic system, controllability means that for
any initial state, it is always possible to achieve any final state from any initial state by admissible shocks
(inputs). Observability means that it is always possible to reconstruct the initial state by observing the output
trajectory, given the evolution of the shocks. Here, the outputs are {Yt}, the inputs are {εt}, and the states are
{St}.
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dependent on θ will give extra identification information in the first order. The subsequent lemma

provides an alternative characterization of observational equivalence that is more convenient for

analysis. This characterization is also the definition used in Komunjer and Ng (2011) and Qu and

Tkachenko (2012).

Lemma 3 (Observational Equivalence) In a linearized DSGE model with Gaussian shocks, if As-

sumption 6 is satisfied, two structural parameter vectors θ0 and θ1 are observationally equivalent if and

only if ΦY (z;θ0) = ΦY (z;θ1) for all z ∈C.

The proof can be found in Appendix A. Lemma 3, when combined with Definition 2, states

that the structural parameter θ can be identified if and only if there is no other structural parameter

that generates the same spectral density. Intuitively speaking, this is because the spectral density

contains the same information as serial dependence of Yt. Therefore, the spectral density ΦY (eiω;θ)

is always identified. However, as illustrated by the following theorem, the commonly used solution

parametrization (A,B,C,D,Σ) people normally work with is not point-identified.

The simplest version of the theorem that characterizes observational equivalence across

discrete-time linear state-space systems, namely the equivalence described by coordinate trans-

formation (A,B,C,D) → (TAT −1,T B,CT −1,D), is well-documented in linear system literature.

Komunjer and Ng (2011) extend it to accommodate the case Σ , Inε , and discuss the singular and

non-singular cases separately because of the need to formulate a minimal system. Alternatively, I

use a more general theorem below (Theorem 1 in Kocięcki and Kolasa (2023)) that accommodates

both singular and non-singular state-space systems.

Theorem 6 (Observational Equivalence) Let Assumptions 6 and 7 hold. Then θ ∼ θ̄ if and only

if (1) Ā = TAT −1, (2) C̄ = CT −1, (3) AQA′ −Q = T −1B̄Σ̄B̄′T ′−1 − BΣB′,(4) CQC′ = D̄Σ̄D̄ ′ −DΣD ′,

(5)AQC′ = T −1B̄Σ̄D̄ ′ −BΣD ′, for some nonsingular nε ×nε matrix T and symmetric nε ×nε matrix Q.

In addition, if θ ∼ θ̄, then both T and Q are unique.

Theorem 6 is an adapted version of Corollary 4.5 in Glover (1973), reformulated and proved by

Kocięcki and Kolasa (2023) to fit the discrete case. It states that two state-space representations are

observationally equivalent up to some similarity transformation.However, it is necessary to establish

connections between the structural parameters θ and their respective state-space parameters, as

well as between θ̄ and its associated state-space parameters, in order to construct an equation

system characterizing their equivalence.
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To do that, first substitute model solution expressed by Equation (30) to Equation (29), and

impose Etεt+1 = 0. This leads to a equation system with variables St−1 and εt. Then, I use

the undetermined coefficient method, letting the coefficients of St−1 and εt be zero, to obtain

the first four equations of system (35)–(44). This method is based on the fact that the state-

space system should always conform with the linear rational expectation model, regardless of the

state realizations. Theorem 6 together with the undetermined coefficient method, allows me to

characterize the identified set by a system of equations. The following equation system is obtained:

Γ̄ s0 Ā+ Γ̄
p
0 F̄ − Γ̄

s
1 (Ā)2 − Γ̄ p1 F̄Ā = Γ̄2 (35)

Γ̄ s1 ĀB̄+ Γ̄
p
1 F̄B̄− Γ̄

s
0 B̄+ Γ̄3 = Γ̄

p
0 Ḡ (36)

C̄ = L̄sĀ+ L̄pF̄ (37)

D̄ = L̄sB̄+ L̄pḠ+ J̄ (38)

Ā = TAT −1 (39)

C̄ = CT −1 (40)

AQA′ −Q = −BΣB′ + T −1B̄Σ̄B̄′
(
T −1

)′
(41)

AQC′ = T −1B̄Σ̄D̄ ′ −BΣD ′ (42)

CQC′ = D̄Σ̄D̄ ′ −DΣD ′ (43)

Q = Q′ , (44)

where Γ0 =
[
Γ s0 Γ

p
0

]
, Γ1 =

[
Γ s1 Γ

p
1

]
, and L = [Ls Lp]; each superscript corresponds to either the state

or policy component. The unknowns in this system are θ̄ (as which Γ̄i are explicitly expressed), the

elements of B̄, D̄, F̄, Ḡ, T , and Q. Others can be canceled via substitution or reparametrization. The

parameters A, B, C, D, and Σ. Assumption 3 is easy to verify when the zero set of a polynomial

system is finite, the structural parameter space is complex, or both (Alexanderian, 2013). However,

it is challenging to show this assumption holds in general when there are infinite solutions, even if

the “discriminant locus" is excluded.

To solve equation system (35)–(44), analytical methods developed in computational algebraic

geometry can be of use when it can be rewritten as a system of polynomials in unknowns.28 That is,

θ̄ appears in polynomial form within Γ̄i , Σ̄, L̄ and J̄ ,29 and (35)–(44) is a polynomial system.

28Polynomial systems are well-studied in mathematics, especially when the number of solutions is finite.
29This is not a restrictive assumption. For instance, when parameters enter as a fraction, researchers can

simply multiply both sides by the denominator to maintain a polynomial form. In cases where parameters
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With the method proposed by Kocięcki and Kolasa (2023), it is possible to find the complete

equivalent set K(θ) with any given θ. All the computations of finding solutions of these systems

are done using SINGULAR (Decker et al., 2022).30 The idea is to find solutions of system (35)–(44).

Using theorems regarding Gröbner basis in algebraic geometry31 allows for the computation of all

solutions satisfying the polynomial system by simplifying the system. The procedure outlined by

Kocięcki and Kolasa (2023) for finding K(θ) can be described as below.

Algorithm 2 (Observationally Equivalent Sets in DSGE)

S.1 Given a structural parameter vector θ, where identification is checked, solve the model numerically

and obtain a state-space representation with parameters (A,B,C,D,Σ).

S.2 Calculate the reduced Gröbner basis for the identification conditions, which are formulated as

equations in (35)–(44) and parameterized by (A,B,C,D,Σ). This forms a polynomial system

involving variables (θ̄, B̄, D̄, F̄, Ḡ,T ,Q).

S.3 If the Gröbner basis has multiple roots of (θ̄, B̄, D̄, F̄, Ḡ,T ,Q), rule out the ones that violate model

constraints.

S.4 If more than one solution remains, return the equivalent sets K(θ).

The algorithm takes an initial parameter value θ as input, solves an LRE model and a polynomial

system, and outputs K(θ), either as a finite collection of points or a simple equation representing

the roots of the polynomial system. Both the processes of solving an LRE model and reducing to

the Gröbner basis can be executed within SINGULAR with arbitrary precision. In the applications

discussed in Section 4, I configure the first part to operate with 600 digits and the latter with 20

digits, providing a higher level of accuracy compared to the default precision setting of MATLAB,

which utilizes 16 digits.

enter the equations in more complex forms (e.g., one is an exponent of another), defining auxiliary parameters
may be necessary, either by adding to the original vector or replacing some parameters to retain a polynomial
structure. The relationship between the removed structural parameters and the newly defined auxiliary
parameters is purely mathematical and known. Kocięcki and Kolasa (2023) call this new parameter vector
semi-structural. In the applications discussed in Section 4, I do not distinguish structural and semi-structural
parameters, except in Section 4.3 for the model from Smets and Wouters (2007).

30It is a computer algebra system for polynomial computations, with special emphasis on commutative
and non-commutative algebra, algebraic geometry, and singularity theory. It is free and open-source under
the GNU General Public Licence. See more information at https://www.singular.uni-kl.de/.

31For comprehensive details, please see Cox et al. (2013).
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4 Applications

In the DSGE framework, the standard approach to obtaining the posterior distribution of η does

not involve estimating reduced-form parameters; instead, it entails evaluating likelihoods based on

the parameters of the state-space representation. Priors are typically selected at the θ-level. For a

given prior distribution, robust Bayesian estimation can then be performed by Algorithm 1, with

second step executed through Algorithm 2.

In this section, I revisit all the models briefly discussed in Section 2, as well as the model

from Smets and Wouters (2007), with a focused discussion on the three-equation New Keynesian

models. For each model, I start with a specification and a predetermined set of true parameter

values, simulate the model, and use the generated data for robust Bayesian estimation. Then I

conduct sensitivity analysis based on algorithm-generated results.

4.1 A Taylor-rule Model

Consider a simple model introduced in Cochrane (2011) that consists of a monetary policy shock

transition, a Fisher equation, and a monetary policy rule:

xt = ρxt−1 + εt , |ρ| < 1, εt ∼N (0,σe)

it = r +Etπt+1

it = r +φππt + xt , φπ > 1,

(45)

where xt is the monetary policy shock, it is the nominal interest rate, r is the constant real rate, and

πt is the inflation rate. Only πt is assumed to be observed. This system is not minimal without

further simplification; therefore, it is necessary to first minimize the system by keeping only xt as

the state variable. The state-space solution yields

A = ρ,B = 1,C =
ρ

ρ −φπ
,D =

1
ρ −φπ

,Σ = σ2
e ,

which is equivalent to an AR(1) setting

πt = ρπt−1 −
1

φπ − ρ
εt , εt ∼N (0,σ2

e ).
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True value Identified set Range of post mean Robust Bayesian credible region
σe 1 (0.2,∞) (0.21,∞) (0.14,∞)
φπ 1.8 (1,∞) (1.00,∞) (1.00,∞)
ρ 0.8 0.8 0.80 (0.74, 0.87)

Table 3: Estimated Identified Set for Cochrane (2011) Model. Because of machine precision
in MATLAB, I round numbers greater than 106 to infinity. Same in Table 5, 9, and 10.

In this case, the structural parameter vector is θ = (ρ,φπ,σe). However, methods such as simple

regression can only identify
(
ρ, σe
φπ−ρ

)
. Invoking Theorem 6 gives the same result that (φπ,σe) are

not identified separately. In fact, K(θ) =
{
(ρ̄, φ̄π, σ̄e) : ρ̄ = ρ, σ̄e

φ̄π−ρ
= σe
φπ−ρ

}
.

The true identified set for the impulse responses is given by IR0(t, s,1) = ρs0
φπ−ρ0

·Q, where

Q, as defined in Theorem 6, is a scalar that takes value in
(
0, φπ−ρ0

1−ρ0

)
in this example. Therefore,

IR0(t, s,1) =
(
min

{
0,− ρs0

1−ρ0

}
,max

{
0,− ρs0

1−ρ0

})
for all horizon s.32 If ρ0 > 0, indicating a positive

serial correlation among monetary shocks, the identified set of the inflation reaction coefficient

is (1,∞), suggesting that while the policy is proactive in addressing inflation, the precise level of

aggressiveness is completely undetermined by the available data.

As discussed in Section 2, the standard Bayesian estimation results from Table 1 and impulse

response analysis in Figure 2 shows the sensitivity of the posterior to the choice of priors.33

Given the analytical result of the identified set K(θ0) and IR0(t, s,1), I then compare them with

the numerical results obtained by applying Algorithm 1.

Let the true parameter values be ρ0 = 0.8,φπ0 = 1.8,σe0 = 1. The identified set of φπ and σe

can be computed accordingly. The last two columns in Table ?? shows the estimation results from

the algorithm.34 The averaged values of the estimated identified sets match the theoretical values

quite well.

I then proceed to compute the impulse responses for inflation πt. First, I find the pointwise

minimum and maximum impulse responses within each equivalence set associated with a posterior

draw. Next, I compute the average or quantile of these bounds and determine the range of posterior

means and the robust Bayesian credible region for the impulse responses. The lower panel of Figure

32Some may argue that if normalizing ε to a standard Gaussian is allowed, identification can be achieved.
However, since εt here can include expectation errors and sunspot shocks, there is no reason to assume unit
variance in addition to zero conditional expectations.

33I use a hierarchical scheme to draw the second posterior based on the first posterior draws and their
observationally equivalent sets so that these two posteriors always induce the same posterior distribution

over
(
ρ, σe

φπ−ρ

)
and, therefore, the same marginal likelihood and posterior predictive distribution.

34Here I start with the prior setup p1(θ) for the algorithm. Same for the lower panel of Figure 7.
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7 shows that the region of model-consistent impulse response functions IR0(t, s,1) is of similar size

to the estimated range of posterior means. Moreover, the 90% robust Bayesian credible region is

much larger, as it should be.

4.2 Three-equation New Keynesian Models

In this section I present applications to three different variants of a baseline New Keynesian model,

also known as the three-equation NK models. They are well-studied small-scale New Keynesian

DSGE models that consist of final-goods producing firms, intermediate-goods producing firms,

households, a central bank, and a fiscal authority (Goodfriend and King, 1997; Clarida et al., 2000;

King, 2000; Woodford, 2003a; Lubik and Schorfheide, 2004; An and Schorfheide, 2007; Galí, 2015;

Herbst and Schorfheide, 2015). The first variant has only temporary shocks, where the (local)

identification failure is within semi-structural parameter κ. The second example is the An and

Schorfheide (2007) model, where local identification fails non-trivially, but the optimal policy does

not depend on parameter estimates. In the last variant, I introducing a cost-push shock (Clarida

et al., 1999; Woodford, 2003a,b; Galí, 2015) to the second model. In that case, policy-makers face

a trade-off between the output gap and inflation when nominal rates are set, and the optimal

monetary policy will depend on estimation results.

4.2.1 Temporary Shocks

Consider a benchmark three-equation New Keynesian model similar to Clarida et al. (1999). Instead

of having AR(1) shocks, I remove the auto-correlation and make them i.i.d.:

yt = Etyt+1 −
1
σ

(it −Etπt+1) + εyt

πt = βEtπt+1 +κyt + επt

it = ρit−1 + (1− ρ)
(
φππt +φyyt

)
+ εRt

εjt ∼ N (0,1); j = y,π,R,

where πt is the inflation, yt is the output gap, it is the nominal interest rate, εyt is the demand

shock, επt is the supply shock, and εRt is the monetary policy shock. The equations are referred

to as the dynamic IS equation, New Keynesian Phillips curve, and an interest rate feedback rule

with output gap rule specification, respectively. Here the structural parameters are the inverse
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intertemporal elasticity of substitution σ ; the Calvo price stickiness τ ; the elasticity of marginal

disutility with respect to labor ψ; the influence of inflation rate and the output gap in the interest

rate rule ψπ and ψy , respectively; κ = (1−τ)(1−βτ)
τ (σ + ψ) is the slope of the Phillips curve. The

structural parameter vector is θ = (σ,β,τ,ψ,φπ,φy), and monetary policy adjustment rate ρ is

calibrated to be 0.1. Putting the above equations in a standard LRE form (29) results in

Γ0 =


1 −(1− ρ)φy −(1− ρ)φπ

1 σ 0

0 −(1− τ)(1− βτ)(σ +ψ) τ

 , Γ1 =


0 0 0

0 σ 1

0 0 βτ

 ,

Γ2 =


ρ

0

0

 , Γ3 =


1 0 0

0 σ 0

0 0 τ

 .

Even this simple three-equation model is complex enough to obscure clear analytical insights,

resembling a black box in terms of identification. However, it is obvious that τ is not identified

in general.35 Moreover, even if identification failure of this kind is excluded, by rescaling ψ and τ

continuously, it is possible to achieve the same κ. Because (ψ,τ) enter the equation system only via

κ, ψ and τ are not separately identified. This means the structural parameters of the three-equation

model, when micro-founded, is neither locally nor globally identified; that is, if the researcher tries

to estimate (σ,β,τ,ψ) instead of just (σ,β,κ) for calibration or policy analysis purposes. In terms of

identification of impulse responses, however, because the model dynamics will be affected only

through κ, they should be identified if (φπ,φy ,σ ,β,κ) are identified. The Blanchard-Kahn condition

(Blanchard and Kahn, 1980), which guarantees determinacy, will not be restrictive here.

Based on data generated from the true values presented in Table 4, I perform a naive Bayesian

estimation using the prior specification within the same table. DYNARE reports identification

checks at the prior mean, and, not surprisingly, (ψ,τ) is pairwise unidentified at that point. The

solutions to the Gröbner basis also show the same identification results for each MCMC draw. This

knowledge helps to reduce the identification problem to finding the (ψ,τ) pairs that lead to the

35For example, If I fix β, for each τ < 1 there is always an observationally equivalent τ > 1 such that
(1−τ)(1−βτ)

τ remains unchanged. The latter can be excluded by restriction of support being [0,1] because τ
stands for price stickiness.
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Table 4: Three-equation Model Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution
Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

φπ 1.7 Normal 1.5 0.5 1.67 1.65 1.46 1.82
φy 0.2 Normal 0.5 0.3 0.21 0.19 0.11 0.29
σ 1 Gamma 1 0.5 0.99 1.01 0.92 1.11
β 0.99 Beta 0.9 0.005 0.99 0.99 0.98 1.00
ψ 1 Gamma 5 2 4.23 4.60 1.46 7.36
τ 0.75 Beta 0.5 0.3 0.84 0.85 0.80 0.91

Table 5: Estimated Identified Set of Structural Parameters for Three-equation Model

True value Identified set Range of post mean Robust Bayesian CR
φπ 1.7 1.7 1.65 (1.46, 1.83)
φy 0.2 0.2 0.20 (0.11, 0.29)
σ 1 1 1.01 (0.92, 1.12)
β 0.99 0.99 0.99 (0.98, 1.00)
ψ 1 (0,+∞) (0,+∞) (0,+∞)
τ 0.75 (0.67,1) (0.69,1.00) (0.63, 1.00)

same κ, when combined with parameter bounds and the Blanchard-Kahn condition, reduced to

(1− τ)(1− 0.99τ)
τ

(1 +ψ) =
103
600

, ψ > 0, 0 < τ < 1,

which then provides the true identified set: for ψ, it is (0,+∞), and for τ , it is (0.67,1). As discussed

above, if (φπ,φy ,σ ,β,κ) are identified, the impulse response functions are also identified (see also

Figure 9). The true impulse response is very close to the posterior mean, the standard Bayesian

credible region is tight, and the 90% robust Bayesian credible region coincides with the 90%

standard credible region when the impulse responses are identified. This result shows that the

algorithm proposed in this paper does not cause a loss (excluding computation time) when the

parameters of interest are identified.

4.2.2 An and Schorfheide (2007)

A more economically meaningful example would be to have nontrivial identification failures (i.e.,

less-mechanical identification issues). The following example is also very similar to the exercises

in Herbst and Schorfheide (2015), where the authors account for autocorrelation in productivity

growth and government spending. The equilibrium is characterized by the following linearized
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Table 6: Estimated Identified Set of Structural Parameters for AS Model

True value Identified Set Range of Posterior Mean Robust Bayesian CR
τ 2 2.00 1.97 (1.36, 2.76)
κ 0.15 0.15 0.15 (0.10, 0.21)
ψπ 1.5 (1.00, 4.87) (1.00, 4.11) (1.00, 5.36)
ψy 1 (0.00, 1.15) (0.00, 0.94) (0.00, 1.44)
ρz 0.65 0.65 0.63 (0.56, 0.71)
ρg 0.75 0.75 0.74 (0.66, 0.82)
ρR 0.6 (0.58, 0.60) (0.54, 0.56) (0.45, 1.00)
100σz 0.45 0.45 0.47 (0.31, 0.67)
100σg 0.8 0.80 0.77 (0.70, 0.84)
100σR 0.2 (0.19, 0.20) (0.20, 0.21) (0.18, 0.23)

equations:

yt = Et

[
yt+1

]
− 1
σ

(it −Et [πt+1]−Et [zt+1]) + gt −Et
[
gt+1

]
πt = βEt [πt+1] + σ

1− v
vπ2ψ

(
yt − gt

)
it = ρRit−1 +

(
1− ρR

)
ψππt +

(
1− ρR

)
ψy

(
yt − gt

)
+ εR,t

zt = ρzzt−1 + εz,t

gt = ρggt−1 + εg,t .

Here the parameters are θ = (σ,β,ν,ψ,ψπ,ψy ,ρR,ρg ,ρz,σR,σg ,σz), including the inverse elasticity of

substitution σ ; the elasticity of demand for each intermediate good 1
ν ; and the quadratic loss in price

adjustment ψ. The endogenous variables are
(
yt ,πt , it , gt , zt

)′
, where St =

(
zt , gt , it

)′
, Pt =

(
πt , yt

)′
. In

the original model there is no measurement error. I therefore drop a few steady state parameters

and assume without loss of generality that the output gap yt, inflation rate πt, and nominal

interest rate it are directly observed. Similar to the example in 4.2.1, ν and ψ enter the model

only through the ratio σ 1−v
vπ2ψ . Because ν and ψ are not separately identifiable, they are replaced

by κ = σ 1−v
vπ2ψ in estimation. However, even with this replacement, it will still be insufficient to

achieve point identification for all parameters. As Komunjer and Ng (2011) and Qu and Tkachenko

(2012) show, the monetary policy parameters (ψπ,ψy ,ρR,σR) cannot be identified in this output

gap rule specification, although under the output growth specification these parameters are locally

identifiable (Ivashchenko and Mutschler, 2020). The robust Bayesian estimation results are reported

in Table 6.
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In the model, I set ψπ > 1 and ψy > 0 to ensure the Blanchard-Kahn conditions are satisfied.

The true values of the set-identified parameters do not always fall in the range of the posterior mean

because of the sampling error. The “Identified Set” column in Table 6 is computed by finding the

observationally equivalent set of the true values using the method of Kocięcki and Kolasa (2023).

The range of values these non-identified parameters can take in the estimation result is a proper

subset of the support. In fact, the identified set can be parametrized by only one free variable

changing continuously within an interval.

4.2.3 A Cost-push Shock Model

Just as sensitivity in estimates does not always translate to sensitivity in impulse responses, it

remains uncertain whether and when the sensitivity of all these estimates might affect optimal

policies, given their shared marginal likelihood.

In the model of An and Schorfheide (2007), the three shocks either have no impact on the

output gap or inflation, or they shift them in the same direction. That feature, known as a divine

coincidence (Blanchard and Galí (2007), Galí (2015)), makes policy analysis a trivial problem,

because policy-makers will maximize the response of the interest rate to dampen the effect of

shocks, and this maximization fully stabilizes both the inflation rate and the output gap at the

same time. In other words, there is no trade-off between stabilizing inflation and the output gap

(Alves (2014)). However, in practice, most central banks still perceive this trade-off. To address

this issue, the literature extends the standard New Keynesian model with additional frictions that

allow the gap between efficient output and output under flexible prices to vary over time (Erceg et

al. (2000), Woodford (2003a), Benigno and Woodford (2005), Ravenna and Walsh (2006), Blanchard

and Galí (2007)). In this section, I assume this gap is exogenous, and add to the Phillips curve a

cost-push shock to capture the gap and generate opposite dynamics for inflation and output (see,

for example, Clarida et al. (1999), Galí (2002), Woodford (2003a), Blanchard and Galí (2007)). To

keep the number of shocks unchanged, I drop the total-factor productivity shock zt:

yt = Et

[
yt+1

]
− 1
σ

(it −Et [πt+1]) + gt −Et
[
gt+1

]
(46)

πt = βEt [πt+1] +κ
(
yt − gt

)
+ut (47)

it = ρRit−1 +
(
1− ρR

)
ψππt +

(
1− ρR

)
ψy

(
yt − gt

)
+ εR,t (48)

ut = ρuut−1 + εu,t (49)
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gt = ρggt−1 + εg,t . (50)

Here the parameters to be estimated are θ = (σ,β,κ,ψπ,ψy ,ρR,ρg ,ρu ,σR,σg ,σu). ut is the cost-

push shock. A positive shock in ut would lead to an increase in the concurrent inflation rate while

simultaneously decreasing the output gap. The state variable vector is St =
(
ut , gt , it

)′
, and the vector

of policy variables is Pt =
(
πt , yt

)′
. As in the previous example, (ψπ,ψy ,ρR,σR) are not identified. For

each given parameter combination, the welfare losses experienced by a representative household

are second-order approximated, proportional to

E0


∞∑
t=0

βt
(
λπ2

t + y2
t

) , (51)

where λ = 1
νκ .36 However, the structural parameter ν in the semi-structural parameter κ cannot

be identified, which makes the weight on πt in the objective function agnostic. Therefore, the

exercises I perform next are for multiple weight choices.37 The central banks can pursue either a

policy characterized by a period-by-period optimization to minimize λπ2
t + y2

t or a state-contingent

sequence of {yt ,πt} that minimizes expression (51) directly. Whereas the former policy, called the

optimal policy under discretion, does not need a central bank to commit itself to any future actions,

the latter requires the central banks to be able to commit with full credibility to a policy plan

(Taylor, 1993; Woodford, 2001; Taylor, 2007).

First, I select a prior using the same hyperparameters as An and Schorfheide (2007), with

the modification of substituting ρg for ρu , and σg for σu . Next, I choose a different posterior that

yields the same posterior predictive distribution, employing a strategy similar to that used in the

Cochrane model. I categorize four pairs of policies (ψπ,ψy) into two groups38 and determine the

optimal policy based on various weights and posterior distributions. The findings are summarized

in Table ??.

Beyond what is already shown in Table ??, Table ?? shows that choices between polarized

policies are more robust to the choice of priors. That is to say, when the alternative policies are

polarized, researchers will have to hold a polarized prior belief on structural parameters (but still

within the same prior class) to disagree with each other’s policy choices.

36The computation details can be found in Woodford (2003a), Galí (2015), Davig (2016).
37The weight choices are scattered to include most calibration choices in the literature and the rule of

thumb choice 1
νκ = 1.

38The policies I compare are from Galí (2015) Table 4.1.
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1
νκ = 1

3
1
νκ = 1 1

νκ = 3 1
νκ = 10 1

νκ = 30
(ψπ,ψy) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ)
(1.5, 0) X X X X X

(1.5, 0.125) X X X X X
(ψπ,ψy) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ)
(1.5, 1) X X X X
(5, 0) X X X X X X

Table 7: Policy Comparison under Different Distributions and Weights. The check mark
indicates that, for each prior distribution pi(θ), where i = 1,2, the policy associated with it
results in a lower welfare loss according to its posterior.

Table 8: Optimal Policy under Different Distributions and Weights

1
νκ = 1

3
1
νκ = 1 1

νκ = 3 1
νκ = 10 1

νκ = 30
optimal policy p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ) p1(θ) p2(θ)
ψπ 2.35 10.39 1.36 4.78 1.76 4.56 3.90 6.17 9.21 14.85
ψy 3.48 26.7 0.23 3.38 0.00 0.85 0.00 0.02 0.00 0.00
104×loss 2.49 2.50 3.13 3.20 4.17 4.30 5.81 5.83 7.51 7.41

Optimal discretionary policy parameters are therefore chosen by solving the following opti-

mization:

arg min
ψπ ,ψy

∫
LW

(
πt , yt | θ−(ψπ ,ψy ),ψπ,ψy

)
dπθ|Y

subject to Equations (46)− (50)

, (52)

where LW (πt , yt | θ−(ψπ ,ψy ),ψπ,ψy) = Et−1

(
1
νκπ

2
t + y2

t

)
denotes the conditional expected loss of wel-

fare under given θ except the choice of ψπ and ψy .

Results in Table 8 reveal that while the welfare loss appears relatively consistent across the two

prior distributions, the optimal Taylor rule parameters exhibit notable sensitivity to this selection.

Indeed, the sensitivity of these policy-related parameters to variations in prior choices becomes

more pronounced when considering a broader range of priors within the same class. To see that, I

first estimate each parameter’s range of posterior means, using Algorithm 1. The results are shown

in Table 9. The range of ψπ is not at all informative but the parameters ψy , ρR, σR have identified

sets that are a proper subsets of their support. Subsequently, I compute the optimal Taylor rule

policy parameters using values of ρR and σR from the true identified set, as reported in Table 10.

The range of optimal Taylor rule parameters that are consistent with the true identified set

of structural parameters is also wide. As ρR gets closer to 1, the optimal values of ψπ and ψy

increase dramatically. This result is almost mechanical because as the auto-correlation of monetary
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Table 9: Estimated Identified Set of Structural Parameters for Cost-push Shock Model

True value Identified Set Range of Posterior Mean Robust Bayesian CR
τ 2 2.00 1.73 (1.34, 2.19)
κ 0.15 0.15 0.21 (0.08, 0.40)
ψπ 1.5 (1, +∞) (1.00, +∞) (1.00, +∞)
ψy 1 (0.22, +∞) (0.20, +∞) (0.15, +∞)
ρu 0.65 0.65 0.67 (0.58, 0.75)
ρg 0.75 0.75 0.74 (0.67, 0.81)
ρR 0.6 (0.49, 1.00) (0.49, 1.00) (0.47, 1.00)
100σu 0.45 0.45 0.49 (0.37, 0.61)
100σg 0.8 0.80 0.77 (0.70, 0.83)
100σR 0.2 (0.16, 0.33) (0.17, 0.34) (0.15, 0.38)

Table 10: Range of Optimal Policy Parameters within the True Identified Set

weight 1
νκ = 1

3
1
νκ = 1 1

νκ = 3 1
νκ = 10 1

νκ = 30
ψπ (3.01, +∞) (1.00, +∞) (1.60, 1490.36) (4.14, +∞) (9.95, +∞)
ψy (10.97, +∞) (0.00, +∞) (0.00, 285.72) (0.00, +∞) (0.00, +∞)
104×loss (2.51, 2.53) (2.26, 3.36) (4.22, 5.07) (5.41, 11.80) (6.85, 35.56)

policy increases, the central bank has to increase the value of (ψπ,ψy) to maintain the same reaction

strength to inflation and output gap. From Table 10, it can be seen that even if a researcher

has a good sense of what the weight should be and has a credible prior for parameters to start

with, another prior with the same predictive distribution may result in a completely different

optimal policy suggestion. Facing policy sensitivity, policy-makers can still make point-wise

recommendations under certain statistical decision criteria (e.g., a min-max rule with respect to

some ε-contaminated neighborhood of a given prior; see Berger (2013), Yata (2021), Giacomini et al.

(2019), Manski (2021) for examples of recent literature), or additional assumptions. For example, a

normalization of the value ρR identifies all the parameters in this example.

In this paper, I do not attempt to establish a rule for selecting the single optimal policy based

on robust Bayesian outputs. Instead, I focus on presenting a method a method that allows for

sensitivity analysis. As Giacomini and Kitagawa (2021) argue in their work, from the output,

one can learn what inferential conclusions can be supported by the model-imposed restrictions

and the data. Manski (2013) concludes that “everyone concerned with policy making should

keep in mind several dangers of policy analysis with incredible certitude”. By comparing the

output across different sets of identification restrictions, researchers can better understand each

set’s identification power and choose upon needs. This tool is also valuable in its own right for
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separating the information contained in the data from any prior input that is not revised by the

data.

4.3 Smets and Wouters (2007)

The Smets-Wouters model have become a modern workhorse and benchmark model for analyzing

monetary and fiscal policy in European central banks, and policy institutions in the US as well. In

the original paper, they estimate a fully specified, medium-sized new Keynesian model with many

frictions and rigidities, and extracting a full set of implied shocks from those estimates. To compare

my identification result with Kocięcki and Kolasa (2023), but in a global sense, I adopted their setup

in my application. In contrast to the initial approach in Smets and Wouters (2007), where the output

gap is viewed as the disparity between actual output and its potential in the absence of nominal

rigidities and markup shocks, Kocięcki and Kolasa (2023) considers it as the deviation of output

from its deterministic trend to ease the computation burden. The mapping between semi-structural

parameters and structural parameters used can be seen in Table 11. Given γ = 100(γ̄ −1), we can

directly back out the identified structural parameters λ from α2, σc from α4, β from α5, δ from α7.

This further allows identification of φw from α3, ψ from α6, ιp from α11 and ιw from α14. Notice that

parameters within the pairs (ξp, εp) and (ξw, εw) enter the model through α12 and α16 respectively,

and are identified jointly rather than being identifiable individually. Therefore, I fix εp and εw in

the estimation procedure.

Table 11 shows that all the constructed semi-structural parameters are point identified. This

observation, in conjunction with the results presented in Table 14 and 15, suggests that all structural

parameters become point identified if εp and εw are fixed. The estimated identified set is therefore

a singleton equal to the posterior mean. The robust Bayesian credible region is the usual Bayesian

credible region in this case.

From the examples discussed in this section, we observe that in linearized DSGE models,

identification issues typically arise within a small-dimensional subvector. This is partly because

researchers generally have a solid understanding of their model and tend to avoid excessive

parameterization. Additionally, although the computational cost of solving the model and reducing

the polynomial system to its Gröbner basis escalates with the size of the model, the cost of sampling

from observationally equivalent sets does not increase, provided the number of free parameters

remains constant.
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Table 11: Estimated Identified Set of Semi-structural Parameters for the Smets-Wouters
Model

True value Posterior mean (Robust) Bayesian CR

α1 = (γ−1+δ)α
β−1γσc−1+δ 0.17 0.17 [0.16,0.18]

α2 = λγ−1

1+λγ−1 0.41 0.41 [0.41,0.42]

α3 = (1−α)(σc−1)
φwσc(1+λγ−1)(1−α1−gy ) 0.13 0.13 [0.12,0.14]

α4 = 1−λγ−1

(1+λγ−1)σc
0.12 0.13 [0.13,0.13]

α5 = 1
1+βγ1−σc 0.50 0.50 [0.50,0.50]

α6 = 1
(1+βγ1−σc )ϕγ2 0.09 0.09 [0.08,0.10]

α7 = βγ−σc(1− δ) 0.97 0.97 [0.97,0.97]
α8 = (1− δ)γ−1 0.97 0.97 [0.97,0.97]
α9 = (1−α8)(1 + βγ1−σc)ϕγ2 0.29 0.31 [0.28,0.34]
α10 =

ιp
1+βγ1−σc ιp

0.19 0.16 [0.14,0.19]

α11 = βγ1−σc

1+βγ1−σc ιp
0.80 0.83 [0.81,0.86]

α12 =
(1−βγ1−σcξp)(1−ξp)

(1+βγ1−σc ιp)ξp[(φp−1)εp+1] 0.02 0.02 [0.02,0.02]

α13 = 1
1−λγ−1 3.41 3.37 [3.29,3.44]

α14 = ιw
1+βγ1−σc 0.29 0.29 [0.27,0.31]

α15 = 1+βγ1−σc ιw
1+βγ1−δc 0.79 0.79 [0.77,0.81]

α16 = (1−βγ1−σcξw)(1−ξw)
(1+βγ1−σc )ξw[(φw−1)εw+1] 0.00 0.01 [0.01,0.01]
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4.4 Discussions

4.4.1 Non-linearity

There has been a growing literature on the estimation of nonlinear DSGE models (Schmitt-Grohé

and Uribe (2004), Fernández-Villaverde and Rubio-Ramírez (2007), Andreasen (2011), Andreasen

(2013), Morris (2014), Ivashchenko (2014), Herbst and Schorfheide (2015), Aruoba et al. (2017),

Andreasen et al. (2018)). Since higher-order approximations retain more information from the

nonlinear function, one might expect these models to have extra identification power that are not

present when only linearized. Mutschler (2015) showed that the models in Kim (2003) and An and

Schorfheide (2007), which are known to have the issue of identification in their linearized Gaussian

form, are identifiable with a second-order approximation.

Schmitt-Grohé and Uribe (2004) introduced the perturbation method, which uses second-order

Taylor expansions around the steady state to approximate the solution. While Taylor expansions are

relatively easy to compute, they can lead to explosive or non-stationary processes. To address these

issues, Kim et al. (2008) developed the pruning method, which has since become widely adopted.

The basic idea of pruning is to eliminate the terms from the policy functions that have higher-order

effects than the approximation order.39

In addition, (Morris, 2014, Chapter 3) showed that under some fairly modest assumptions,

the deviations-from-means of the pruned state-space of second-order approximation can be

reparametrized to ABCD representation. He also showed that the errors, although they become

non-Gaussian, are white noise processes with finite covariance. This reparametrized form satisfies

assumptions 1–2 in Komunjer and Ng (2011), and can be "minimized" into a minimal ABCD system.

Consequently, Algorithm 1 remains applicable. However, the loss of Gaussianity means that the

observationally equivalent sets found by the algorithm will be a superset of the actual K(θ).

4.4.2 Indeterminacy

It has been well-established that linear rational expectation models can exhibit multiple solutions

with plausible parameter values (Sims (2002), Lubik and Schorfheide (2003), Farmer et al. (2015),

Funovits (2017), Bianchi and Nicolò (2021)). However, identification exercises taking into account

indeterminacy remain rare in the literature. Qu and Tkachenko (2017) are the first to propose a

framework to check global identification in linearized DSGE models that allow both determinacy

39See Andreasen et al. (2018) for a complete analysis.
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and indeterminacy from a frequency domain perspective.

Kocięcki and Kolasa (2023) argue that Theorem 6 can handle indeterminate parametrization

when a sufficient number of expectation errors are redefined as new fundamentals. However, a

fixed structure of ABCD representation is needed, i.e., identification analysis needs to be done

within either the determinate or the indeterminate part of the parameter space.

One direct result of allowing for indeterminacy is the possible failure of the continuity property.

There are examples in the literature of discontinuity of solutions to linear rational expectation

models (e.g., Al-Sadoon and Zwiernik (2019)). Nevertheless, researchers need only the continuity

of solutions around the true value to apply the proposed algorithm in this paper. It’s often assumed

that this continuity property holds, but verifying this assumption can be exceedingly challenging.

5 Conclusions

The sensitivity of standard Bayesian results in set-identified models is well-known; however, it had

not been investigated much in highly structural models such as the DSGE settings. I showed in

this paper that not only parameter estimates but also inference based on estimation results, such as

impulse response functions and optimal policies, can be sensitive to the choice of priors.

To provide insight into set-identified structural models, I developed a novel robust Bayesian

method to perform sensitivity analysis. The algorithm proposed in this paper can be used to

conduct robust Bayesian inference on the parameters of interest without the need to exhaust all

possible priors.

While structural models can suffer from other important issues, such as weak identification in

DSGE models Canova and Sala (2009), Müller (2012), Guerron-Quintana et al. (2013), Andrews and

Mikusheva (2015), Ho (2022), I do not attempt to address those issues in this paper. Although there’s

always the option to adjust the model (e.g., by introducing additional shocks) when identification

fails, the method presented in this paper proves especially valuable in several scenarios:

1. When researchers want to make minimal adjustments or calibrations to the model.

2. When researchers possess confidence in their model setup and seek to assess the implications

for estimates, even in situations where the model lacks point identification.

3. When policy-makers want to make robust decisions based on priors of equal predictive

power.
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The applications of the algorithm presented in this paper are based on assumptions of linearized

models with Gaussian shocks under determinacy, but they cover a wide range of DSGE models, and

a numerical extension to non-linearity and indeterminacy is promising. At the same time, since

reparametrization of the Gröbner basis becomes expensive to solve when set-identified structural

parameters are high-dimensional, better optimization tools with constraints defined by polynomials

may significantly reduce the computational burden.

A Proofs

Proof for Lemma 1: Note Πθ(πK ) =
{
πθ : πθ

({
θ : K(θ) ∈ B

})
= πK (B), for B ∈ B(F )

}
. For anyπθ , π̄θ ∈

Πθ(πK ), ∫
Θ

p(y | θ)dπθ =
∫
F
p(y | K)dπK =

∫
Θ

p(y | θ)dπ̄θ (53)

where the equalities comes from change-of variables formula (see for example Stroock (1994);

Folland (1999)) and K∗πθ = K∗π̄θ. �

Proof for Theorem 1: This proof, while taking into account the differences in topological structures,

mirrors the approach taken in Theorem 1 of Giacomini and Kitagawa (2021), which can be divided

into four steps.

First, under Assumption 1, K(θ) is a random closed set induced by some probability measure

on (Θ,A). Since η : Θ→H is a continuous function, for any closed set D, {θ : η(K(θ))∩D , ∅} = {θ :

K(θ)∩ η−1(D) , ∅} ∈ A by Effros-measurability of K and the fact that η−1(D) is a closed subset of Θ.

Therefore η(K(θ)) is also a random closed set.

In the second step, I show that for any πθ|K ∈Πθ|K and A ∈ A,

1{K⊂A} ≤ πθ|K (A), πK − a.s. (54)

Note that the set {θ : K(θ) ⊂ A} = {θ : K(θ)∩Ac , ∅}c is also measurable. Denote KA1 = {K ∈ K(Θ) :

K ⊂ A}. Showing (54) is equivalent to showing

∫
B

1KA1 dπK ≤
∫
B
πθ|K (A)dπK (55)
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for every πθ|K ∈Πθ|K and B ∈ B(F ). It then goes

∫
B
πθ|K (A)dπK ≥

∫
B∩KA1

πθ|K (A)dπK (56)

= πθ

(
A∩

{
θ : K(θ) ∈ B,K(θ) ⊂ A

})
(57)

= πθ

({
θ : K(θ) ∈ B,K(θ) ⊂ A

})
(58)

= πK
(
B∩KA1

)
(59)

=
∫
B

1KA1 dπK (60)

where the first equality comes from the definition of the conditional distribution.

In the third step, I show that, for each A ∈ A, there exists πAθ|K ∈Πθ|K that achieves the lower

bound of πθ|K obtained in (54), πK almost surely. Consider the following three subsets of F ,

KA0 =
{
K ∈ K(Θ) : K ∩A = ∅

}
, (61)

KA1 =
{
K ∈ K(Θ) : K ⊂ A

}
, (62)

KA2 =
{
K ∈ K(Θ) : K ∩A , ∅ and K ∩Ac , ∅

}
(63)

They are measurable, mutually disjoint and forms a partition of K(Θ). Next, I will construct a

Θ−valued selection SA(K) on KA2 , and the conditional probability distribution πAθ|K that achieves

the lower bound given SA(K) and an arbitrary conditional distribution πAθ|K ∈Πθ|K .

Let SA(K) = argmaxθ∈Aε∩K d(θ,A), where d(θ,A) = infθ′∈A || θ − θ′ ||, Aε = {θ : d(θ,A) ≤ ε}.

Note that SA(K) ∈ Ac by construction if defined on a nonempty KA2 . Theorem 2.27, as presented in

Chapter 1 of Molchanov (2005), establishes that SA(K) is a random variable. Given SA(K), and an

arbitrary πAθ|K ∈Πθ|K , for any Ã ∈ A

πAθ|K (Ã) =


πAθ|K (Ã), for K ∈ KA0 ∪K

A
1 ,

1{SA(K)∈Ã}(K), for K ∈ KA2 .
(64)

It can be verified that πAθ|K is a probability measure in (Θ,A) and πAθ|K ∈Πθ|K . For any B ∈ B(F ), it

then follows

∫
B
πAθ|K (A)dπK =

∫
B
πAθ|K (A∩K)dπK (65)
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=
∫
B∩KA0

πAθ|K (A∩K)dπK +
∫
B∩KA1

πAθ|K (A∩K)dπK (66)

+
∫
B∩KA2

πAθ|K (A∩K)dπK (67)

= 0 +
∫
B∩KA1

πAθ|K (A∩K)dπK + 0 (68)

=
∫
B

1KA1 dπK , (69)

where the first equality is from πAθ|K ∈Πθ|K , the third equality follows because A∩K = ∅ for K ∈ KA0 ,

and by construction πAθ|K (A∩K) = 1{SA(K)∈A∩K}(K) = 0 for K ∈ KA2 . Given that this equality applies

for all B ∈ B(F ), it follows that πAθ|K (A) = 1KA1 , and the lower bound is always attainable.

We are now in position to show Theorem 1. We first show the special case of η(θ) = θ.

Expanding the integral we have

inf
πθ|Y ∈Πθ|Y

πθ|Y (A) = inf
πθ|K∈Πθ|K

∫
F
πθ|K (A)dπK |Y , A ∈ A (70)

The lower bound of πθ|Y (A) is minimized over the class Πθ|Y by plugging in the attainable pointwise

lower bound of πθ|K , which is 1{K⊂A}. Therefore,

inf
πθ|Y ∈Πθ|Y

πθ|Y (A) = inf
πθ|K∈Πθ|K

∫
F
πθ|K (A)dπK |Y (71)

= inf
πθ|K∈Πθ|K

∫
F

1{K⊂A}(K)dπK |Y (72)

= πK |Y ({K ⊂ A}) (73)

= πθ|Y

({
θ : K(θ) ⊂ A

})
(74)

The last equality comes from equation (9).

The expression of the posterior upper probability follows directly from its conjugacy with the

lower probability.

πθ|Y (A) = 1−πθ|Y (Ac) (75)

= 1−πθ|Y
({
θ : K(θ) ⊂ Ac

})
(76)

= 1−πθ|Y
({
θ : K(θ)∩A = ∅

})
(77)

= πθ|Y

({
θ : K(θ)∩A , ∅

})
(78)
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To show
{
πθ|Y (A) : πη|Y ∈Πθ|Y

}
is a connected interval, we use similar construction as the second

step, for any Ã ∈ A,

πAθ|K (Ã) =


πAθ|K (Ã), for K ∈ KA0 ∪K

A
1 ,

1{SAc (K)∈Ã}(K), for K ∈ KA2 .
(79)

Consider a mixture of these two conditional priors, πλθ|K ≡ λπ
A
θ|K +(1−λ)πAθ|K . Note that πλθ|K ∈Πη|Y

for any λ ∈ [0,1]. Since λ can be chosen arbitrarily,
{
πθ|Y (A) : πθ|Y ∈Πη|Y

}
is connected.

Now, for more general forms of η, the same argument follows, by replacing set A above by

η−1(D), which is also measurable with respect to A.

inf
πη|Y ∈Πη|Y

πη|Y (D) = inf
πθ|Y ∈Πθ|Y

πθ|Y
(
η−1(D)

)
(80)

= inf
πθ|K∈Πθ|K

∫
F

1{K⊂η−1(D)}(K)dπK |Y (81)

= πK |Y

({
K ⊂ η−1(D)

})
(82)

= πθ|Y

({
θ : η(K(θ)) ⊂D

})
(83)

�

Proof for Lemma 2:

The proof of this Lemma is a simple generalization of the same proof in Ke et al. (2022) online

appendix C.

Let p(y | θ) be the likelihood of y conditional on θ being the structural parameter. Since the

likelihood depends on θ only through K(θ), we have p̃(y | K(θ)) = p(y | θ). The data Y updates πθ

to πθ|Y in the following sense (see Ghosal and Van der Vaart (2017) formula 1.1),

πθ|Y (A) =

∫
A
p(y | θ)dπθ∫
p(y | θ)dπθ

, for any A ∈ A. (84)

Plug in this formula

π∗K |Y (B) = πθ|Y (K−1(B)) = πθ|Y ({θ : K(θ) ∈ B}) =

∫
{θ:K(θ)∈B}p(y | θ)dπθ∫

p(y | θ)dπθ
. (85)
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And this is equal to

πK |Y (B) =

∫
B
p(y | K)dπK∫
p(y | K)dπK

=

∫
{θ:K(θ)∈B} p̃(y | K(θ))dπθ∫

p̃(y | K(θ))dπθ
=

∫
{θ:K(θ)∈B}p(y | θ)dπθ∫

p(y | θ)dπθ
, (86)

where the second equality comes from change of variable (see for example Lemma 5.0.1 from

Stroock (1994)). �

Lemma 4 Given Πθ(πK ) and its corresponding measurable function K : Θ→F , there is a unique pair

(Πθ|K ,πK ) up to a measure zero set such that for any πθ ∈Πθ(πK ), there exists a πθ|K ∈Πθ|K and πK

such that

πθ =
∫
F
πθ|KdπK , πθ

({
θ : K(θ) ∈ ·

})
= πK (·), (87)

and, conversely, Πθ is uniquely determined by (Πθ|K ,πK ).

Proof for Theorem 2:

It is enough to show the equality for the prior class for the supremum case, i.e., supπθ∈Πθ
Eπθ

[
η(θ)

]
=

Eπθ

[
η∗(θ)

]
. Equality in posterior follows immediately from Lemma 2. Infimum case is similar.

Pick any two priors πθ , π̃θ ∈Πθ,

Eπ̃θ

[
η(θ)

]
≤ Eπ̃θ

[
η∗(θ)

]
= Eπθ

[
η∗(θ)

]
(88)

where the second equality follows from the definition of η∗(θ) and πθ , π̃θ have the property that

they induce the same πK .

To show the reverse inequality, choose any ε > 0 and from Lemma 4 we can define

Π̃θ =

π̃θ ∈Πθ : Eπ̃θ|K
[
η(θ)

]
≥ sup
θ′∈K

η(θ)− ε,πK − almost surely

 (89)

and this set is nonempty. Then, for any π̃θ ∈ Π̃θ,

Eπ̃θ

[
η(θ)

]
= EπK

[
Eπ̃θ|K

(
η(θ)

)]
≥ EπK

sup
θ′∈K

η(θ)− ε
 = Eπθ

[
η∗(θ)

]
− ε (90)

Let ε decrease to 0. The proof can also be done using random set theory, see Theorem 2.18 in

Molchanov and Molinari (2018). �
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Proof for Theorem 3: From Theorem 1,

inf
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
= πθ|Y

({
θ : η

(
K(θ)

)
⊂ (−∞,q]

})
(91)

= πθ|Y
({
θ : η∗(θ) ≤ q

})
(92)

whereas

sup
πη|Y ∈Πη|Y

πη|Y
(
(−∞,q]

)
= πθ|Y

({
θ : η

(
K(θ)

)
∩ (−∞,q] , ∅

})
(93)

= πθ|Y

({
θ : η∗(θ) ≤ q

})
(94)

�

Proof for Lemma 3:

Under a linearized DSGE model with Gaussian shocks, with stability assumption 6, Yt is a

weakly stationary time series.

Moreover, the expectation of Yt is 0. Therefore, the distribution of Yt is fully characterized by

its second moments, Γ (j), j = −∞, . . . ,∞. In other words, the vector of second moments is a sufficient

statistic for θ.

Since ΦY (z;θ) is a z-transform of second moments Yt, which is a one-to-one mapping between

the second moments Γ (j) and ΦY (z) (Hannan (2009), p. 46), ΦY (z) must also be a sufficient statistic.

In other words, it guarantees the same information contained in ΦY (z;θ) and the likelihood p(y | θ).

�

B Supplementary Tables and Graphs
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Figure 4: Log-likelihood of the Cochrane model when the correlation coefficient ρ is fixed
at 0.8 and sample size T = 1,000,000. The thick line is the maxima ridge of the likelihood
function.
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Figure 5: Trace plot of MCMC draws parameters
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Figure 6: Maximum A Posteriori (MAP) Estimates of structural parameters with 1000
replications
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Figure 7: IRF in the Cochrane model. The red line is the impulse response with true
parameter values. IR0 is the theoretical identified set of IR. Range of posterior mean and
the robust Bay
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Table 12: AS Model Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution
Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

τ 2 Gamma 2 0.5 1.79 1.97 1.29 2.61
κ 0.15 Gamma 0.2 0.1 0.13 0.15 0.10 0.20
φπ 1.5 Gamma 1.5 0.25 1.52 1.59 1.16 1.99
φy 1 Gamma 0.5 0.25 0.67 0.76 0.35 1.11
ρz 0.65 Beta 0.66 0.15 0.64 0.63 0.55 0.71
ρg 0.75 Beta 0.8 0.1 0.74 0.74 0.66 0.82
ρR 0.6 Beta 0.5 0.2 0.56 0.56 0.47 0.63
100σz 0.45 Inv Gamma 0.5 4 0.43 0.46 0.30 0.64
100σg 0.8 Inv Gamma 1 4 0.76 0.77 0.70 0.83
100σR 0.2 Inv Gamma 0.4 4 0.20 0.20 0.18 0.23

Figure 10: Prior and posterior for the AS model
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Table 13: Cost-push Model Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution
Distr. Mean St.Dev. Mode Mean 5 percen 95 percent

τ 2 Gamma 2 0.5 1.68 1.73 1.31 2.12
κ 0.15 Gamma 0.2 0.1 0.16 0.21 0.06 0.37
ψπ 1.5 Gamma 1.5 0.25 1.27 1.34 1.05 1.58
ψy 1 Gamma 0.5 0.25 0.56 0.67 0.30 1.00
ρu 0.65 Beta 0.66 0.15 0.67 0.67 0.58 0.75
ρg 0.75 Beta 0.8 0.1 0.74 0.74 0.67 0.82
ρR 0.6 Beta 0.5 0.2 0.56 0.57 0.51 0.62
100σu 0.45 Inv Gamma 0.5 4 0.45 0.48 0.36 0.59
100σg 0.8 Inv Gamma 1 4 0.75 0.76 0.70 0.83
100σR 0.20 Inv Gamma 0.4 4 0.19 0.20 0.17 0.22

Figure 12: Prior and posterior for the cost-push shock model
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Table 14: Estimated Identified Set of Untransformed Structural Parameters for the Smets-
Wouters Model

True value Posterior mean (Robust) Bayesian CR
100(γ̄ − 1) 0.43 0.43 [0.43,0.43]
π̄ 0.70 0.75 [0.69, 0.80]
l̄ 0 -0.26 [-0.61, 0.11]
gy 0.18 0.17 [0.14,0.19]
φp 1.60 1.57 [1.53,1.60]
α 0.19 0.19 [0.19,0.20]
ψ 0.54 0.53 [0.51,0.54]
σl 1.83 1.99 [1.64,2.39]
ρ 0.81 0.80 [0.79,0.80]
rπ 2.04 1.97 [1.91,2.03]
ry 0.08 0.07 [0.07,0.08]
r∆y 0.22 0.22 [0.21,0.23]
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Table 15: Estimated Identified Set of Parameters of Shock Processes for the Smets-Wouters
Model

True value Identified set (Robust) Bayesian CR
ρa 0.95 0.95 [0.95,0.95]
ρb 0.22 0.23 [0.20,0.25]
ρg 0.97 0.97 [0.97,0.97]
ρi 0.71 0.70 [0.69,0.71]
ρr 0.15 0.15 [0.15,0.16]
ρp 0.89 0.87 [0.85,0.89]
ρw 0.96 0.96 [0.96,0.97]
ρga 0.52 0.52 [0.49,0.54]
µp 0.69 0.64 [0.59,0.69]
µw 0.84 0.85 [0.83,0.86]
σa 0.45 0.45 [0.44,0.46]
σb 0.23 0.21 [0.20,0.22]
σg 0.53 0.52 [0.51,0.53]
σi 0.45 0.45 [0.44,0.46]
σr 0.24 0.24 [0.23,0.24]
σp 0.14 0.14 [0.14,0.15]
σw 0.24 0.24 [0.23,0.25]
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