
Centralized or Decentralized? A Dynamic Model

on Government Task Assignment in Pandemics

Qiwei He and Yizhou Kuang

Preliminary draft please do not cite or circulate

Last updated: April 23, 2023

Abstract

This paper empirically studies the government task assignment problem in the context of

dynamic policy implementation. We focus on effective mitigation policy design to reduce

virus spread in the COVID-19 pandemics. We start by estimating a structural SIR model

with regional spillover effects using indirect inference to model virus transmission. Then,

we develop and estimate a dynamic game model where each U.S. state independently

forms mitigation policies. Socially optimal mitigation policy is then solved by minimizing

the sum of local governments’ welfare loss using estimated weights on different sectors.

Counterfactual analysis of centralized decision-making is conducted to compare the social

welfare gain (loss) should the US adopt a mitigation policy at the federal level.
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1 Introduction

The choice between decentralized decision-making and centralized decision-making plays

a pivotal role in shaping public policy design. The classical insight against using decen-

tralized decision making is the potential cost of policy spillover effect that reduces social

welfare (Oates et al., 1972). In many cases, policy implementation is a dynamic process,

where different regions may adopt a similar policy at different point of time. Assessing

the cost of policy spillover effects in such dynamic policy implementation poses significant

empirical challenges as it necessitates estimating policymakers’ preferences and solving

for counterfactual policy implementation, along with its consequences on social welfare.

In this paper, we propose and estimate a dynamic game model to study the welfare cost

of spillover effects in the context of dynamic policy implementation during the COVID-19

pandemic.

Since the outbreak of the COVID-19 pandemic in March 2020, numerous national and

subnational governments have implemented mitigation policies to contain the spread of

virus. These mitigation policies primarily fall into two categories: centralized and de-

centralized social distancing. In a centralized approach, the central government controls

the policy implementation for the entire nation. Conversely, in a decentralized strategy,

decision-making authority is handed over to subnational units, such as state or provincial

governments. In practice, many countries, including U.S., Canada, and Australia, have

opted for decentralized decision-making.1 In addition, although some news outlets have

reported coordination among certain U.S. states regarding reopening decisions,2 there is

no evidence of similar coordination when it came to the imposition of lockdowns in the

U.S.

Considering the highly infectious nature of the disease, a mitigation policy enacted

in one region can significantly impact other closely connected areas. For instance, if re-

gion A enforces a lockdown while neighboring region B does not, inter-regional travel
1For a dataset of governments’ responses to COVID-19, see Hale et al. (2021).
2See, for example, the news report titled “New York, New Jersey and other Northeastern states form

coronavirusworking group to decidewhen to ease restrictions”: https://www.cnbc.com/2020/04/13/new-
york-new-jersey-and-other-northeastern-states-form-coronavirus-working-group-to-decide-
when-to-ease-restrictions.html
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could potentially compromise the effectiveness of the policy. Motivated by the above-

mentioned policy-making challenges, this paper studies the optimal timing of mitigation

policy. Given decentralized decisionmaking realizations, we assume that regional govern-

ments do not consider the network externalities of COVID-19 transmission across regions

when deciding on lockdown measures. We ask the following research questions:

1. Considering the externalities of their decisions, what’s the optimal timing of lock-

downs for regional governments in equilibrium?

2. What’s the welfare loss/gain from the decentralized decision-making, relative to the

optimal uniform policy?

To answer the aforementioned questions, we start by establishing a dynamic structural

SIRmodel to describe the transmission of COVID-19 conditional on different levels of mit-

igation policies. In the model, each region has some residents who fall into the following

3 different categories at any given moment - susceptible, infected, or recovered. Each in-

fected individual carries a risk of death in the subsequent period. Our model operates

under the assumption that all individuals start as susceptible to the virus, and immunity

is acquired post-recovery. Our study is primarily focused on the initialwave of theCOVID-

19 pandemic in the United States (the orignal strain, or the “wild type”), to avoid compli-

cations related to changes in the fundamental properties of the virus, such as the infection,

reproduction and death rates. Regions, in our model, form a network, leading to poten-

tial spillover effects from one region’s COVID-19 transmission to all others. The model

calibrates intra-region and inter-region travel using mobility metrics from SafeGraph.

However, due to the inherently noisy nature of COVID-19 data during its initial out-

break, we do not directly estimate the structural SIR model. This data noise stems from

a number of factors including inconsistent measurement practices early in the pandemic,

limited accessibility of tests, and a significant number of false negatives, all of which could

lead to a severe underestimation of the number of infections. Therefore, we use indirect

inference to fit the daily death provided by the The COVID Tracking Project3 and use the

fitted daily death to recover the daily infectious rate of each region using the structural
3See https://covidtracking.com/ for details.
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SIR model. Our indirect inference approach draws inspiration from Atkeson et al. (2021),

albeit with a different parametric form. Specifically, we estimate the parameters of a log-

normal density function with scaling and markov switching variances. To model the in-

fection rate, We allow it to depend on mitigation policies, daily death toll, and cumulative

deaths. A sieve regression is subsequently applied to estimate the COVID-19 infection

rate for each region. For the empirical component of this study, our analysis narrows to

seven states within the United States, i.e., Connecticut, Delaware, Massachusetts, New

Jersy, New York, Pennsylvania and Rhode Island.

We use the employment index from The Opportunity Insights Economic Tracker program

to keep track of the economics condition of each state.4 We assume that the economic con-

dition is strongly affected bymitigation policies, alongside the daily death and cumulative

death tolls. To trace the trajectory of the employment index, we apply an autoregressive

model of the first order, or AR(1). Leveraging both the structural SIR model and the

employment index’s law of motion, we can simulate crucial counterfactual variables that

characterize COVID-19. These variables are essential for understanding the preferences

of regional governments

To capture the decision-making process of regional governments regarding mitigation

policy, we formulate a model of dynamic games. In this model, each regional government

must balance the economic repercussions of implementing mitigation policies against the

number of deaths in their region. We posit that regional governments are only concerned

with the economic opportunity cost of mitigation policy and the death toll of their own re-

gion. The externalities of their decision to other regions are not taken into consideration as

motivated by the electoral concern. After setting up the model, we use the observed miti-

gation decision made by each regional government to estimate the dynamic game model

to obtain preference parameter of regional governments. Following the insights from Ba-

jari et al. (2007), we utilize a forward simulation method to approximate value functions

and construct estimates.

Finally, we plan to carry out a series of exercises to analyze welfare implications under

different counterfactual policy making. First, we examine whether centralized decision
4See https://tracktherecovery.org for more details.
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making improves social welfare, where in this case the central government determines the

timing of a uniform lockdownpolicy applicable to all states. Following that, we investigate

how social welfare changes where state governments internalize the spillover effects of

their policies and collaborate accordingly.

Our paper is directly related to the literature of externalities, fiscal federalism and dy-

namic public good: our approach to the problem, i.e. decentral versus central provision is

first proposed by Oates et al. (1972) and further analyzed by Banzhaf and Chupp (2012),

ground water (Kuwayama and Brozović, 2013) and state gun (Knight, 2013). Also see

some empirical work related to this topic (Strumpf and Oberholzer-Gee, 2002). Since

regional mitigation policy is a public good to the entire nation, our paper is related to

the dynamic public good literature (Fershtman and Nitzan (1991), Levhari et al. (1981),

Battaglini and Coate (2007), Battaglini et al. (2014)). Compared to the existing literature,

we extend thewelfare analysis of externalities to a dynamic policymaking process. We de-

velop and estimate a dynamic model to quantify the welfare loss of decentralized decision

making given externalities. Our empirical exercise substantiates the fact that the timing of

policy execution carries significant welfare consequences. The estimation framework we

adopt is dynamic game model (Bajari et al. (2007), Aguirregabiria and Mira (2007)).

Our work is also related to the literature of the economics of epidemics as well as

the literature on COVID-19. There is a sizable literature in economics that analyze epi-

demics. Mesnard and Seabright (2009), Toxvaerd (2019), Greenwood et al. (2019), Fang

et al. (2020) and Hsiang et al. (2020) provides reduced form empirical evidence that the

practice of restricting human mobility (regional lock-down) in China has saved a lot of

lives. Chudik et al. (2021) argues that the voluntary social distancing could be too late

to containing the spread of virus. Barrios and Hochberg (2021) and Allcott et al. (2020)

study people’s heterogeneous risk preferences and compliances to the stay at home or-

der.There has been a considerably amount of papers that incorporate the traditional "SIR"

or "SEIR" model into neoclassical macro economics model to study the effect of COVID-19

on economy (Kaplan et al. (2020), Eichenbaum et al. (2021), Alvarez et al. (2021), Kuch-

ler et al. (2022), Jones et al. (2021)). Other important endeavors that are related to us

concerns the estimation of key parameters related to COVID-19, see Manski and Molinari
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(2021) and Hortaçsu et al. (2021), Chudik et al. (2021). To the best of our knowledge,

existing models do not effectively incorporate the human mobility network, nor do they

research the optimal timing for local government’s mitigation decisions within the context

of public economics using real-world data.

The remainder of this paper is organized as follows. In Sections 2 we specify the

datasets used in this paper. Section 3 provides motivation and empirical evidences for

this paper and model setups. Sections 4 and 5 we estimate the structural SIR model and

dynamic game model, respectively. Section 6 we provide a counter-factual analysis and

Section 7 concludes.

2 Data

In this section, we introduce our main data source. Our empirical analysis focuses on

a number of states within the US, namely Connecticut, Delaware, Massachusetts, New

Jersey, New York, Pennsylvania, and Rhode Island. These states are presumed to have

strong interconnections because of geographical proximity.

2.1 Data

2.1.1 Footage data

We use the anonymous, aggregated smartphone footage data provided by SafeGraph5 to

have a measure of effectiveness of mitigation policies. A measure of inter-state, or inter-

county travel frequencies during normal times and after the start of COVID-19 pandemics.

We also make use of data from PlaceIQ6 to compare with the inter/intra-state connection

results we compute from SafeGraph.

From SafeGraph, we use the Social Distancing Metrics dataset and within this dataset,

we keep only the origin census block group, date range start, device count, completely home device

count, destination cbgs variables. The dataset has 220 thousand observations everyday, give

or take. Each row represents a origin census block group, which uses the unique 12-digit
5See https://docs.safegraph.com/docs/social-distancing-metrics for details.
6See https://github.com/COVIDExposureIndices/COVIDExposureIndices for details.
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FIPS code for the Census Block Group. Device count denotes number of devices seen in

their panel during the date range whose home is in census block group. Home is defined

as the common nighttime location for the device over a 6 week period where nighttime

is 6 pm - 7 am. Any census block groups where the count < 5 are not included. Out

of the device count, completely home device count is the number of devices which did not

leave the geohash-7 (153m × 153m) region. in which their home is located during the

time period. Each destination cbgs contains a dictionary in which the keys are a destination

census block groups and value is the number of deviceswith a home in census block group

that stopped in the given destination census block group for >1 minute during the time

period. Destination census block group will also include the origin census block group.

For robustness purpose, we also use the exposure indices derived from PlaceIQ move-

ment data produced by Glaeser et al. (2020). They produced a state-level location expo-

sure index (LEX): Among smartphones that pinged in a given state today, what share of

those devices pinged in each state at least once during the previous 14 days? The daily

state-level LEX is a 51-by-51 matrix in which each cell reports, among devices that pinged

today in the column state, the share of devices that pinged in the row state at least once

during the previous 14 days, i.e.,

LEXij =
#devices pinned in state i in the past 14 days among denominator

#devices pinned in state j today

2.1.2 Epidemiological data

We use the tested, confirmed and death data released mainly from state health depart-

ments. We impute the missing or inaccessible data using data from The COVID Tracking

Project7. They collect, cross-check, and publish COVID-19 data from 56 US states and ter-

ritories in three main areas: testing, patient outcomes, and, via The COVID Racial Data

Tracker, racial and ethnic demographic information. Because of measurement problems

mentioned by Manski and Molinari (2021). We believe the daily deaths data are the most

reliable variable. To avoid interpreting measurement changes as underlying structural

changes observed in the data, we smooth the daily death number by interpolating out-
7See https://covidtracking.com/ for details.
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liers before bring this data to estimation.

2.1.3 Economic Indicators

The economic indicators that we use are from The Opportunity Insights Economic Tracker

program,8. Specifically, we use daily unemployment rates across different geographical lo-

cations and industries (see also Chetty et al. (2020) for some papers based on the dataset).

Unemployment rates is based on the weekly unemployment insurance claims counts and

rates (as a share of the 2019 labor force).

2.1.4 Government Intervention

Mitigation and re-open policies are also used for estimation. Data provided by Killeen

et al. (2020) contains the dates that counties (or states governing them) took measures

to mitigate the spread by restricting gatherings, including stay at home, >50 gatherings,

>500 gatherings, public schools restaurant dine-in, entertainment/gym, federal guidelines, foreign

travel ban. They also include those intervention rollback dates in the dataset. Any type of

restaurant or gym reopeningwas taken as the rollback date (for example, the county could

have reopened at 25% capacity and only outdoor, all theway to business as usual. The data

does not distinguish the reopen levels along this dimension.)

3 Empirical Evidences

Here we show preliminary empirical patterns of how COVID-19 spreads temporally and

geographically. Additionally, we show thatmitigation policies have strong impact on virus

transmission.

Figure 1 shows the geographical pattern of patients with confirmed coronavirus dis-

ease in US across time starting fromMarch 10 toMarch 30. We can see clearly that COVID-

19 spreads through economically and geographically connected regions, this motivates

that different regions should have their own time lines in terms of combating the virus.

Moreover, the human activity network is crucial in disease transmission.
8See https://tracktherecovery.org.
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Figure 2 shows the cross state border activities for 13 state pairs (from PlaceIQ). This is

measured by state-level location exposure index (LEX): the share of those devices pinged

in each state at least once during the previous 14 day among smartphones that pinged in

a given state today. The size of the squares represents the size of the indexes. We see that

externalities across different states pairs are different. This motivates the idea that when

making decisions, states are facing a network externalities with different heterogeneous

impact. For example, New Jersey and New York are more closely connected than other

states due to the highly active cross-border transportation.

Figure 3 shows a time line of 45 states ordering stay at home order. While most of

the states declare the quarantine rule in late March, the timeline lasts as long as 20 days.

This gives us enough exogenous variation to investigate the effect of lockdown policies to

disease transmission.

Figure 4 County-level data shows the pattern of social distancing before and after the

stay at home order. This ratio is measured by the share of mobile devices which did not

leave home. The completely-stay-at-home ratio does not change much between February

2/03/2020 - 3/02/2020, but increases uniformly across the country between 3/02/2020 -

3/30/2020. This is necessary but not sufficient to show a causal relation between a lock-

down policy and lower commute levels. It could be people started to be more informed

of this disease and voluntarily stay in quarantine.

3.1 Reduced-Form Evidence

To further confirm the effect of mitigation policy, we present some reduced-form empir-

ical figure to support that government’s mitigation policy has substantial effect on peo-

ple’s moving patterns. We find that the mitigation policy issued by state governments

decreased people’s activity. Moreover, we also find that one state’s mitigation policy de-

creases the number of people who travel to adjacent states.

To test the effect of state government’s mitigation policy, we first construct a panel

dataset consisting of several activity indices and confirmed COVID-19 cases. We plot the

activity index against a time window 30 days before and after a certain mitigation policy
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is implemented. When plotting the graph, we controlled for the effect of confirmed cases

on people’s willingness to engage in social activities. We also controlled for state fixed

effects, the effect of each day of a week, as well as holidays.

Figure 6a shows how each state’s first mitigation policy affects percentage change of

people staying at home while figure 6b shows how each state’s stay at home order affects

percentage change of people staying at home in each states. We only distinguish first state

action and stay at home order because many states issue many mitigation policies at a

same day, making it hard to distinguish the effect of them.

To test a the effect of mitigation policy on inter-state travel, we changed the dependent

variable to be a constructed measure of interstate travel index LEXm
m′,t provided by Pla-

ceIQ. LEXm,t is constructed to be the inter-state travel frequency index from a state m to

state m′. m′ is the state that has the most cross-border travel with state m. For example,

if m = NY , then m′ = NJ . Figure 7a shows the results for the impact of each state’s first

mitigation policy.

We also conduct a falsification test to show that state m’s mitigation policy will not

affect the movement from state m to m′. To do that, we construct another index LEXm
t

that is the LEX index for people travel from state other than m to m. Figure 7b shows the

effect by using NY as an example.

4 Structure SIR

Time is discrete and is denoted as t = 0, 1, 2.... There are M heterogeneous regions that

we denote each of them as m ∈ {1, 2, 3, ...M}. At each point of time t, each region has a

population of nmt with initial mass of nm0 in each region. The total population at each point

of time is Nt =
∑M

r nmt with initial population N0 =
∑M

r nm0 . We normalize the number

of individuals in each state by the population. On the one hand, because we do not have

daily population data, and the overall population change is small compare to its scale. On

the other hand, as will become clear later, we only care about the transition coefficients.
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4.1 State Variables

Weclassify our state variables (Xt) into 2 groups. The first group isCOVID-19 (Dt) related

while the other group is economic related (Et).

First we introduce the COVID-19 (Dt) related state variables. At any given point of

time, each individual in each region can be one of the 4 types: susceptible, infected or

recovered, and dead. We specify the definition of the 4 states as follows (each as a fraction

of regional population at time t):

• Susceptible (smt ): individuals that have not been exposed to the virus. This group

are those who will never be tested positive.

• Infected (imt ): individuals that are infected. We include both symptomatic patients

and asymptomatic ones in this group. This group becomes infectious, i.e., people

have close contact with this groupwill likely be infected. The fraction of this group is

extremely hard tomeasure, taking into account the test-taker ratio and false negative

rates of the tests. The number of this group is not comparable to any established

metric in data sets to our best knowledge.

• Recovered (rmt ): Infected individuals that have recovered and we assume they have

immunity thereafter9.

• Dead (dmt ): individuals that are dead because of COVID-19 infection. In some states,

these individuals must also have COVID-19 listed on the death certificate to count

as a COVID-19 death. When states post multiple numbers for fatalities, the metric

includes only deaths with COVID-19 listed on the death certificate, unless deaths

among cases is a more reliable metric in the state. Although the reported number of

this group can still be biased10, it is more reliable than the infected measure.
9Although this is obviously not true in the long run, in this paper we only consider the first wave and

the variant of COVID, that is, the SARS-COV-2. In such a short amount of time it is therefore reasonable to
assume the immunity still holds.

10COVID-19-caused death is tricky to define, and it has been updated over time. See for
example https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-
19.pdf and https://www.mass.gov/news/department-of-public-health-updates-covid-19-death-
definition
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Hence in each region, we have the following equality holds:

1 = smt + imt + rmt + dmt

There are two absorbing states of the Markov chain: recovered and dead. Hence, in the

end everyone will be in either of these two states.

Now we introduce the economic related state variables Et that contains a measure of

economic condition during the COVID-19 pandemic. LetEm
t be the economic related state

variables from regionm, which is the relative unemployment level for each state.

4.2 Action Space

At t = 0,M0 regions of the economy is hit by a deadly virus. Each of theM0 regions has

total infected population sm0 so the virus starts to spread.

To avoid the quickly spread of the virus, the government can impose policy to control

the spread. Themeasures that regional governments can do is to impose different degrees

of social distancing, such as mandatory statewide capacity, gathering limits and physical

distancing requirements and mask requirements. Specifically, we assume that the social

distancing decision is a discrete decision that has a total L + 1 possible actions, i.e. lmt ∈

{0, l1, l2, ...lL}, each of which is assumed to match a specific observed policy of regional

governments. Denote Lt as a vector of actions that all states issue. For the purpose of

estimation, we assume the actions are ordinal, meaning li is less effective than lj if li < lj

4.3 Transition density of COVID-19 Related State Variables

For the 2 different sets of state variables, we use different empirical strategies to capture

them. For the COVID-19 related state variables Dt we build a simple empirical oriented

structural SIR model to capture the transition ofDt. And we non-parametrically estimate

the transition of economic state variables conditional on the disease state variables. The

underlying assumption is that disease transmission process is unaffected by the economic

state variables Et. This is an fairly strong assumption because one can argue that both
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disease and economic state variables are jointly determined by individual behavior. One

could build up a model to capture them together, but because the focus here is not to

characterize specific channels between virus transmitting and economic activity, we adopt

this reduced form way to model the transition of state variables.

Specifically, we consider a basic SIR structurewith regional spillover effect. The follow-

ing equations fully describe the transition between each COVID-19 related state variables

∆smt+1 = −λm,m(lmt )βm(lmt )
smt

1− dmt
imt −

∑
m′ 6=m

λm,m′(l
m′

t )βm
′
(lm

′

t )im
′

t

smt
1− dmt

(1)

∆imt+1 = λm,m(lmt )βm(lmt )
smt

1− dmt
imt +

∑
m′ 6=m

λm,m′(l
m′

t )βm
′
(lm

′

t )im
′

t

smt
1− dmt

− γimt (2)

∆rmt+1 = (1− ν)γimt (3)

∆dmt+1 = νγimt (4)

where λm,m′(lmt ) describes the intra/inter state mobility fromm′ tom, and βm(lmt ) cap-

tures the infection rate (up to a constant). γ is the rate at which agents who are infected

stop being infectious and hence stop transmitting the disease. ν is the fatality rate11. We

need to also account for the fact that people tend to actively avoid meeting when situa-

tion gets worse. We argue that this avoidance (which lowers the contact rate) could be

captured by assuming a parametric structure for λmt , which has a time trend or depends

linearly on aggregate death number. For simplicity, we do not add this extra variation in

the following exercise. To solve the model using full-information we need to solve for a

4-variable diffusion process, which is beyond this paper.
11We could allow for γ and ν to be regional dependent and it would only affect our estimation by increas-

ing the errors.
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Rewrite (3) and (4), we have

imt =
1

νγ
∆dmt+1

rmt =
1− ν
ν

dmt

smt = 1− dmt −
1− ν
ν

dmt − imt = 1− 1

ν
dmt −

1

νγ
∆dmt+1

Put (1)-(4) in a matrix form,


−λ1,1(l1t )i1t −λ1,2(l2t )i2t · · · −λ1,M(lMt )iMt

−λ2,1(l1t )i1t −λ2,2(l2t )i2t · · · −λ2,M(lMt )iMt
... ... . . . ...

−λM,1(l
1
t )i

1
t −λM,2(l

2
t )i

2
t · · · −λM,M(lMt )iMt

 ·

β1(l1t )

β2(l2t )
...

βM(lMt )

 =


∆s1t+1

/ s1t
1−d1t

∆s2t+1

/ s2t
1−d2t...

∆sMt+1

/ sMt
1−dMt


The idea here is to use dmt , ∆dmt to recover state variables imt , rmt ,smt and ∆smt+1. We cal-

ibrate λ from the Safegraph mobility data. Specifically, we calculate the inter and within

region mobilit index for each pair of region m ∈ {1, 2, ...M} and m′ ∈ {1, 2, ...M} t. Then

we calculate the average λm,m′(l) for each state pair under a specific policy l. This iswithout

loss of generality because any other variations of λ is loaded into the COVID-19 transmis-

sion sequence {β} that we estimate.

Because λ are calibrated fromdata, the COVID-19 transmission rate sequence {βm(lmt )}

can be solved from the above matrix equality for each region at each point of time t. Note

that in this structure SIRmodel we assume that we can not directly observe the suspected,

infected or recovered population, which as discussed above, is more or less the reality.

4.4 Parametrization

There are a few parameterwe need to calibrate beforewe proceed to estimation. Following

Atkeson et al. (2021), we let the parameter γ be the daily rate at which agents who are

infected stop being infectious, that is, γ is the transition from the state i to the state r or

d. We hereby call it the recovery rate. Estimates for COVID-19 continue to be updated as

new data comes in. Values of incubation period between 2 and 14 (by ECDC), and remain
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infectious for another 5-10 days are considered in the literature 12, which correspond to a

rate γ between 1/5 and 1/10. In this paper, we use the lowest infectious time period 5 for

mild cases, that is, γ = 1/5. We discuss sensitivity of our results to this parameter below.

We denote the fatality rate from the disease by ν. That is, ν is the fraction of infected

agents who stop transmitting the disease because they died. Measurement of the fatality

rate of the disease is difficult because of incomplete measurement of the number of in-

fected people and of the number of deaths from COVID-19. Even a place with tested rate

approaching 1 could have yielded a biased fatality rate measurement because of type 1

and type 2 errors in testing. There is a wide range of estimates of this parameter. Early es-

timates of the fatality rate among infected people from the Diamond Princess cruise ship

in which both infections and fatalities were well measured are in the range of 1.3% (Rus-

sell et al., 2020). Recent estimates of the infection fatality rate obtained from trends in the

case fatality rate and testing data worldwide and in the United States lie in the range of

0.5% and 1.2% (Levin et al., 2020) respectively. A study on estimating infection fatality

rate in NYC between March 1-May 16, 2020 gives an IFR of 1.45% (Yang et al., 2021). We

consider values of ν= 1% as our baseline value and 1.4% as an alternative value.

4.4.1 Auxiliary Model

So far, randomness does not play any role in our model. To make our transition of state

variables non-trivial, it seems natural to make our structural SIR a stochastic differential

system. The reason we don’t do that here is two-fold: First, solving for a four-variable

diffusion process can be hard, in addition, you need assumptions that guarantees the ’re-

ducibility’ of the system (Aït-Sahalia, 2002, 2008) to have a close-form transition density.

The second reason is we want to control the source of error so that it only comes from

the channel of daily death data, which we trust the most. To get a good estimate of dm(t),

∆dmt and ∆2dmt , we consider the following Markov Chain regime-switching model as our

auxiliary model and conduct indirect inference (Gourieroux et al., 1993). We consider the

parametric form of a lognormal density because it provides a good approximation to our
12e.g, Zaki and Mohamed (2021), see also CDC website https://www.who.int/news-room/

commentaries/detail/criteria-for-releasing-covid-19-patients-from-isolation
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daily death data.

Consider an auxiliary model for daily death like this:

∆Dt =
c

tσ
√

2π
· exp(−(log t− µ)2

2σ2
+ σktεt

where ∆Dt is the daily death without normalization. c > 0 is the scale parameter, σ > 0

is the variation parameter, µ is the location parameter.

kt here is the regime at time t, εt are i.i.d. and standard Gaussian. One rationale for this

auxiliary model is we observe a mean-zero process after taking a difference with the daily

death data. We add-in more flexibility in volatility of this process by allowing parameters

to vary by regimes, which can be justified by different stages of disease transmission.

The set of parameters that we need to estimate is the following,

θ =
{
c, µ, σ, σ1, σ2, q

k
i,j

}
Given the regime-switching equation, we could write the likelihood, i.e.

logL
(
∆DData

t | ∆Dt−1, Data , kt, θ
)

= logL
(
∆DData

t | kt, θ
)

= −1

2
log(2π)− log (σkt)−

(
∆DData

t − c
tσ
√
2π
· exp(− (log t−µ)2

2σ2

)2
2σ2

kt

It follows that the likelihood function for ∆DData is

L
(
∆DData | θ

)
=

T∏
t=t0

x∑
kt=1

[
L
(
∆DData

t | ∆Dt−1, Data , kt, θ
)
p
(
kt | ∆Dt−1, Data , θ

)]
Given the initial condition p

(
kt0−1 = 1 | ∆Dt0−1, Data , θ

)
= 1/2, the predictive probability

of regime, p
(
kt | ∆Dt−1, Data , θ

)
, can be updated recursively through Hamilton (1989) ’s

filter as

p
(
kt | ∆Dt−1, Data , θ

)
=

2∑
kt−1=1

qkt,kt−1p
(
kt−1 | ∆Dt−1, Data , θ

)
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and

p
(
kt | ∆Dt, Data , θ

)
=

L
(
∆DData

t | ∆Dt−1, Data , kt, θ
)
p
(
kt | ∆Dt−1, Data , θ

)∑X
kt=1 [L (∆DData

t | ∆Dt−1, Data , kt, θ) p (kt | ∆Dt−1, Data , θ)]

Let p(θ) be the prior pdf. Specifically, we take p(θ) to be uniform distribution for a and σkt ,

and the Dirichlet distribution for the elements of left stochastic matrix Qk. It follows that

the log posterior density function of θ is

log p
(
θ | ∆DData ) = logL

(
∆DData | θ

)
+ log p(θ)− log p

(
∆DData )

where p
(
∆DData ) is the marginal data density (MDD).

This proposed auxiliary model is to fully capture ∆Dt using the existing ∆Ddata
t . We

rely heavily on ∆Ddata
t to estimate our auxiliary model because we believe the daily in-

creased death sequence is a relatively reliable data source during COVID-19 pandemic

time.

However, on top of using the death data, we also incorporate information from con-

firmed case data to enhance our estimates in the auxiliary model. To achieve this, we

reference the literature to obtain upper and lower bounds for the infectious rate. These

bounds are then employed as supplementary information within our auxiliary model.

More specifically, because we could always back out the infected sequence imt by using

a death sequence according to our structure SIR model. Therefore, during the estimation,

we first calculate upper bound and lower bound of infected population at each period t

(im,uppert and im,lowert ) using the same method as Manski and Molinari (2021). Then we

impose the restriction that the our model implied sequence of infected population must

be within the upper and lower bound of infected population for 95% of the time, i.e. or

Pr
[
îmt ∈ [im,lowert , im,uppert ]

]
≥ 95% where

d̂mt =
1

νγ
∆d̂mt

and ∆dmt comes from our one period ahead prediction using date ∆Dt−1,Data given a set

of parameters θ̂ =
{
ĉ, µ̂, σ̂, σ̂1, σ̂2, q̂

k
i,j

}
.
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Both im,uppert and im,lowert are calculated using the methods proposed in Manski and

Molinari (2021). The information are used as moment inequalities to bound our esti-

mates. In our estimation of the Manski and Molinari (2021) bounds for infection rate,

we let sensitivity take values between 0.6 to 0.9 and let specificity be 113, i.e., there is no

false positives.

4.4.2 Counter-factual COVID-19 Transmission

Estimating a dynamic game model requires simulating COVID-19 state variables given

different counter-factual policy implementations. Based on the structural SIRmodel spec-

ified in equations 1 and the specified inter-region activity function λ, we still need to put

structure on how the COVID-19 transmission rate dependent on mitigation policy l.

Specifically, we assume that the COVID-19 transmission rate of state m at time t is

an function of state policies (dummies) and number of daily death ∆dmt and cumulative

death dmt , using the polynomials of the death regressors up to order 3 as the sieve basis

function, i.e.,

βmt = αm1 1(lmt = 0) + αm2 1(lmt = FSA) + αm3 1(lmt = SAH) + αm
4 P(log dmt ) + αm

5 P(log ∆dmt ),

where P(·) denotes the vector of the polynomial basis. We first estimate parameters {αm}

for each region separately using sieve regression, then we compare the model predicted

transmission rate β̂mt and the actual transmission rate computed from the SIRmodel {βmt }.

Figure 9a and 9b examines the model-fit.

With the structural model of transmission rate and calibrated inter-region mobility in-

dex given mitigation policy, we can simulate the counter-factual disease transmission at

any point time t for any regionm using the structural SIR model.
13The sensitivity and specificity of tests for COVID-19 on the tested sub-population are P (test positive |

tested, infected) and P (text negative | tested, not infected) respectively.
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4.5 Transition of the Economic State Variable

After fully describing the transition density of COVID-19 related state variables, we de-

scribe howweget the transitiondensity of economic related state variablesEt = (E1
t , · · · , EM

t ).

The economic state variable that we consider describes the employment condition for each

region taken from the The Opportunity Insights Economics Tracker program. Given the as-

sumption that economic state variable is affected by the disease situation, we propose a

parametric model to estimate the transition density forEt for each regionwith an assump-

tion that the epidemiological state variables are not affected by economic state variables.

Specifically, we assume that the employment condition (Em
t ) evolves according to the fol-

lowing parameterized AR(1) transition density:

Em
t = ρuEm

t−1 + ρdu∆d
m
t +

∑
k

ρlu1(lm = k) + emt (5)

where Zt consists of dmt , and ∆dmt . ∆dmt is fitted value from the auxiliary model. emt is

an error term. In practice, all COVID-19 state variables are logged. We pool all regions

together in the estimation.

Table 1 shows the results of the estimation. We intuitively find that more strict miti-

gation policies and higher daily death have negative impacts on employment condition.

The regression has a high R-square, meaning that the AR1 model can approximate the

transition of economics state well.

Putting together with our results on the COVID transition p(∆dt,dt | ∆dt−1,dt−1,Lt),

we have specified the transition density of all state variables p(Xt|Xt−1,Lt). Note again that

the structural of our SIRmodel makes it sufficient to carry only two COVID state variables.

5 Dynamic Game

In this section, we setup the dynamic game for each regional governments. In the setup,

we treat each regional government as an independent decision maker. In the model, each

regional government’s decision on mitigation policies can depend on, COVID scenarios,

economics conditions and other governments’ decisions.
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Each regional governments seek to minimized the present discounted cost from the

disease of their own region described as below:

min
lmt ∈{0,l1,...lL}

∞∑
t=0

δt [π(Em
t ,∆d

m
t , l

m
t ) + ξmt (lm)] (6)

subject to the lawofmotion of state variables p(Xt|Xt−1,Lt). δ is a discount rate. Wedenote

the deterministic part of the per periodpayoffof regional governmentm as π(Em
t ,∆d

m
t , l

m
t ).

ξmt ∼ N(0, 1) is a choice specific i.i.d. random shock.

Here, we assume that each regional government forms a correct belief on the transition

of all state variables. That is to say, regional governments have rational expectation on the

future disease propagation and the evolution of economy during the pandemic.

The the deterministic part of the per period payoff π(Em
t ,∆d

m
t , l

m
t ) captures the trade-

off of economic activity and death from the disease. More specifically, it takes the form as

follows

π(Em
t , d

m
t , l

m
t ) = θeE

m
t︸ ︷︷ ︸

loss of economics activity

+ θd∆d
m
t︸ ︷︷ ︸

cost of death

+
L∑
i

θip1{lmt = li}︸ ︷︷ ︸
cost of implementing mitigation policies

The first part of π captures the loss of economic activity. Em
t contains ameasure of employ-

ment condition. The second term measures the cost of death. The last term is a regional

specific cost of implementing social distancing. The current setup of the each region’s

decision problem does not depend on other regions. This is motivated by the electoral

concern, i.e. the regional leaders are primarily responsible for regional population. We

believe this is a reasonable assumption given the US political institution.

5.1 Equilibrium

We consider pure-strategy Markov Perfect Equilibrium. That is to say, regional govern-

ments play Markovian strategies. The equilibrium policy is a function of payoff relevant

state variables.

Let σm(L|X) be the region m’s belief about the possibility of having action profile L
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when the realized state isX. Denote σ = (σ1, ..., σM)

We now formally define an equilibrium here:

Equilibrium 1 A pure-strategy Markov Perfect Equilibrium is a collection of belief and strategies

(σ,L) = (σ1, ..., σM , l1, ...lM) if:

• All players use Markovian strategies;

• For allm, lm is a best response to L−m given the belief σm at each state X ∈ X ;

• For allm, the belief σm is consistent with the strategy L,

Equilibrium needs not be unique in this dynamic context. However, following Bajari et

al. (2007), we assume the data observed are generated by a single MPE profile L. And

since the per-period payoff function π(Lt,Xt, ξmi ) satisfies the Monotone Choice assump-

tion stated in Bajari et al. (2007), we can estimate Pr(lmt |Xt) given the distribution knowl-

edge of ξmt .

5.2 CCP estimation

An important insight from the dynamics game estimation literature is that Conditional

Choice Probability can be estimated outside of the main estimation process. The idea is

that given the choices made by the players (regional government) must be optimal, we

can directly estimate the conditional choice probability as a function of all relevant state

variables.

Formally, denote L(Xt) as the conditional choice probability as a function of all the

state variables. We estimate the policy function using the ordered-Probit model. The de-

pendent variable is the observed policy choice for each day, which is chosen from an or-

dered set {0, FSA, SAH}. Explanatory variables are (logged): Em
t , ∆dmt , dmt ,

∑
m′ 6=m ∆dm

′
t ,∑

m′ 6=m d
m′
t . Other regions’ state variables are grouped together when entering the policy

function of regionm, followingRyan (2012). Additionally,We include the total population

of the region.
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Table 2 reports the result. We find that the R-square of the CCP estimation is high

(larger than 0.9) meaning that the implementation of mitigation policy can be well ex-

plained by the set of state variables. Additionally, we find that the number of daily death

and cumulative death in a region pushes the government toward implementingmitigation

policies which is intuitive.

5.3 Value function approximation

We approximate value function through forward simulation a la Bajari et al. (2007). They

key idea is that we can approximate value functions by simulating the value function for-

ward for enough long periods with the help of the estimated conditional choice proba-

bility. The validity of this method relies on an accurately estimated conditional choice

probability (CCP) function and forward simulations that cover enough different poten-

tial equilibrium paths.

Let V (X;L; θ) denote the value function of firm i at state X, where Markov strategy L

is used by allm. Then we have

V (X;L; θ) = E

[
T∑
t=0

βtπ (L(Xt, ξt),Xt, ξ
m
t ; θ)) |X0 = X; θ

]

where T and β should be chosen s.t. value function after T periods is sufficiently small,

e.g. β = 0.98 and T = 120. Because we have in total 546 unique state realizations observed

in the data, we approximate value function for all of them.

Therefore, a single simulated path of play can be obtained by the following:

1. Starting at stateX0 = X, draw private shock ξmo from N(0, 1) for eachm.

2. Pick an action lm0 from anyMarkov strategy profileL(X0, ξ0) (or any other deviations

of it) and the resulting profits π (L(X0, ξ0),X0, ξ
m
0 ; θ)).

3. Draw a new stateX1 using the estimated transition density P.

4. Repeat above steps for T periods.
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Because one simulation path contains randomness. We averagingG different paths of play

to obtain an estimate of V (X;L; θ) given any strategy profiles.

One simplification that is mentioned in Bajari et al. (2007) is that when the parameter θ

enters into the payoff function linearly, one can first simulate the future state variables and

shocks then multiply with parameters to get value functions. This method can alleviate

the computation burden. Importantly, we can use the linearity simplification because the

way θ enters into the profit function linearly.

5.4 Estimator

Given the equilibrium definition, the strategy profile L is a MPE if and only if ∀m, ∀X, and

∀ alternative Markov policies l′ ,

V (X; l′,L−m; θ) ≤ V (X; l,L−m; θ)

Intuitively, this means that the all other strategies will not generate a larger value as com-

pared to the policy strategy profile L, since L is on the equilibrium path.

Given this intuition, we can form the following estimator (Bajari et al. (2007), hence-

forth the BBL estimator)

θ̂BBL = argmin
θ

∑
X

∑
l′

max{(V (X; l′,L−m; θ)− V (X; l,L−m; θ))
2
, 0}

The idea here is that deviation strategies L’ should generate lower values for the decision

maker. To obtain a reasonable estimator, we follow Sweeting (2013) to construct a reason-

able deviation strategy L’. Specifically, we perturbate the cutoffs in the conditional choice

probability function we obtained shown in table 2 because cutoffs in a ordered Probit re-

gression directly deternmines the policy choice.

5.5 Estimates

Estimates coming.
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6 Counterfactual Analysis

We plan to conduct two counterfactual analyses. The first one is to calculate the optimal

timing of mitigation policy given our estimates. While the second is to hypothesize a

central government that can decide the regional mitigation policies for each region.

6.1 Optimal Timing

We consider a social planner who seeks tominimize the present discounted loss described

as below

min
lmt ∈{0,l1,...lL}

∞∑
t=0

δt

[∑
m

πp(Em
t , d

m
t , l

m
t )

]
where π(Em

t , d
m
t , l

m
t ) is a per period utility that the social planner derives. It is the same

per period utility function as the regional government.

π(Em
t , d

m
t , l

m
t ) = θ̂′eE

m
t + θ̂′df(dmt ) +

L∑
i

θ̂ip1{lmt = li}

In the per period utlity function, θ̂′e, θ̂′d and θ̂ip are estimates from the previous estimation

step. We seek to solve this single player dynamic problem and find the policy function

that minimizes the present discounted value of the social planner.

The idea here is that the social planner takes into account the spillover nature of the

infectious disease. We also plan to compare the social planner’s welfare with the welfare

derived from the observed mitigation policy scheme.

Estimates coming.

7 Conclusion

In this paper, we revisit classical decentralization problem in the context of the COVID-

19 pandemic. We study the consequence of different mitigation policies on social welfare

from centralized and decentralized decision-making. To our best knowledge, we are the

first to put local governments’ decisions in a dynamic game framework and compare the
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cost and benefit of decentralization.
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Figure 1: Confirmed Cases in US at Different Point of Time
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Figure 2: Cross State Border Activities by State Pairs at Different Point of Time
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Figure 3: Timing of Observed State lock-down Order by Time in US
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Figure 4: Social Distancing in US at Different Point of Time
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Figure 5: Lock-down Policy and Stay-at-home in NY
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(a) Effect of First State Action
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(b) Effect of Stay At Home Order

Figure 6: Effect of Different Mitigation Policies on % Change of Stay at Home
Notes: the dependent variable here is the percentage change of people who stay at
home. The vertical line in figure 6a is the time when first mitigation policy is issued.
The vertical line in figure 6b is the time when stay at home order is issued. We group
the observations before and after the policy into 10 bins each and fit a line on it. When
plotting the graph, we controlled for the effect of confirmed cases on people’s willing-
ness to engage in social activities. We also controlled for state fixed effects, the effect
of each day of a week, as well as holidays.
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(a) Effect of First State Action on LEX Index
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(b) Placebo Effect of First State Action on LEX Index

Figure 7: Effect of Different Mitigation Policies on % Change of LEX Index
Notes: the dependent variable here is the LEX index. Figure 7a picks a statem′ that is
themost closely connected state tom for allm. Figure 7b picks LEX indeces fromNY to
all other statesm′. The left vertical line is when the statem′ issues a mitigation policy.
The difference between 2 vertival lines are 14 days. we group the observations before
and after the policy into 10 bins each and fit a line on it. When plotting the graph, we
controlled for the effect of confirmed cases on people’s willingness to engage in social
activities. We also controlled for state fixed effects, the effect of each day of a week, as
well as holidays.
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(a) Simulation of the Daily Death from the Auxillary Model for Connecticut, Delaware, Mas-
sachusetts and New Jersy

(b) Simulation of theDailyDeath from theAuxillaryModel forNewYork, Pennsylvania andRhode
Island
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(a) Estimated and fitted infection rate for Connecticut, Delaware, Massachusetts and New Jersy

(b) Estimated and fitted infection rate βmt for New York, Pennsylvania and Rhode Island
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Tables

Table 1: Transition Density of Economics State Variable

Employment Condition
Lagged Unemployment Condition 0.957∗∗∗

(0.002)

Lagged Daily Death -0.0007∗∗∗
(0.00012)

Mitigation Policy=0 0
(.)

Mitigation Policy=1 -0.005∗∗∗
(0.002)

Mitigation Policy=2 -0.012∗∗∗
(0.002)

Constant -0.005∗∗∗
(0.002)

R-square 1
Observations 539

Notes: The dependent variable is the relative state of employment to mid-
January from The Opportunity Insights Economics Tracker program. We use
Daily Death estimates from the auxiliary model detailed in subsection 4.4.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 2: Estimates of Conditional Choice Probability

Mitigation Policy
Employment Condition 76.88***

(19.49)

Daily Death 1.632*
(0.847)

Cumulative Death 4.080***
(1.286)

Sum Daily Death 2.103***
(0.726)

Sum Cumulative Death 1.043
(1.258)

Logged Population 0.297
(0.209)

cutoff1 13.08***
(4.250)

cutoff2 18.28***
(4.631)

R-square 0.915
Observations 546

Notes: Weuse an ordered-Probit model to estimate the Con-
ditional Choice Probability (CCP). The dependent variable
is the implementation ofmitigation policy. Daily Death and
Cumulative Death are estimates from the auxiliary model
detailed in subsection 4.4.1. * p < 0.10, ** p < 0.05, ***
p < 0.01
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