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Motivation

¢ Set-identified structural models are ubiquitous.
+ E.g., DSGE models are widely used:

+x U.S. Fed, Bank of Canada, Sveriges Riksbank, IMF etc.
+x They are also super relevant for policy-making.

* Analysis of these models is challenging because of ‘identification’:

+ DSGE models are micro-founded, rich with parameters.
+ Multiple parameter combinations may yield same data generating process.
+ Standard Bayesian methods can be sensitive to prior choices.
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Motivation - Estimation

A monetary policy model (Cochrane 2011, JPE). In its AR(1) form

e, ¢x>1,|p| <1, ~ N(0,0?)

Tt = pTt—1 +

1
Gr —p
parameter vector (¢, oc, p), Taylor rule parameter ¢, monetary policy

disturbance coefficient p, its standard error o.. Inflation rate =; is observed.
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Motivation - Estimation
Table: Prior and Posterior Distribution of Structural Parameters
True value Prior distribution Posterior distribution
Distr. Mean St. Dev. Mode Mean 5percent 95 percent
[ 1 Uniform 4 2.02 5.82 4.43 1.94 2.02
b 1.8 Uniform 4 1.73 6.49 4.91 2.78 7.00
p 0.8 Uniform  0.75 0.09 0.82 0.81 0.74 0.87
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- Likelihood function while fix p = 0.8, T = 1,000, 000

® Maxima along the o = ¢ — 0.8 line
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® The posterior of o. and ¢, are extremely informative even if only ﬁ
is identified.

e Why? Joint likelihood density more concentrated on areas with higher

values of ¢, and o-..
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Motivation - Estimation
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(a) Impulse responses using prior setup 1

® 1-unit monetary policy disturbance shock on inflation.

(b) Impulse responses using prior setup 2

® Impulse response with two different priors (that has the same distribution

over (p,
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Motivation - Policy Analysis
Suppose a central bank using the following small-sized model
1.
Ve =Et [Vi1] — p (it = Bt [me41]) + 9t — Et [Gr41]
m = BEt [me] + K (Ve — 9) + U

it = prit—1 + (1 — pr) Yamt + (1 — pr) ¥y (Yt — 9t) + €R,t

Ut = pult—1 +eut, gt = pggi—1 + Eg,t-

is trying to use the estimated parameter (history)

(0,8, K, ¥x, 2y, pr, pg, pu, OR, 0g, 0u), t0 choose a policy rule

If = e 4Py (Ve — Gt)

that minimize welfare loss in the form of 72 4 ay 2.
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Motivation - Policy Analysis

® Now consider two policies (¢, %y,) = (1.5,0), and (1.5,0.125)

Table: Policy Comparison under Different Distributions and Weights

— =1 =3 = =10
(Y, y) post1 post2 post1 post2 posti1 post2
(1.5, 0) v v v
(1.5, 0.125) v v v

® Policy choices are sensitive to prior choices as well.
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Research Question

e Set-identification for parameters of interest.

+ sensitivity analysis: What's the identified set of parameters? How much can
the posterior mean change as | change the prior?

® Given, for example, a DSGE model and observed data,

+ policy implications: Is it always possible to support a policy rule robust of
priors?
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Literature and Contributions

* Robust Bayesian analysis: Berger et al. (1994), Berger, Insua, and
Ruggeri (2000), Gustafson (2015), Giacomini and Kitagawa (2021), Ke,
Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and Read (2022)

¢ |dentification in DSGE models: Canova and Sala (2009), Iskrev (2010),
Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and Tkachenko (2017),
Kociecki and Kolasa (2018), Kociecki and Kolasa (2023)
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Literature and Contributions

* Frequentist inference for set-identified models: Horowitz and
Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov, Hong,
and Tamer (2007), Stoye (2009), Romano and Shaikh (2010), Kaido, Molinari,
and Stoye (2019)

¢ Bayesian inference for set-identified models: Baumeister and
Hamilton (2015), Kline and Tamer (2016), Chen, Christensen, and Tamer (2018)

* My contribution:
® A new Bayesian algorithm that can be applied to general structural models
for estimation and inference.
® | work on “global” identification rather than identification at certain point
(KK23).
® Method applied to DSGE models, whereas GK21’s method only applicable
to SVAR.
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Estimate a Linearized DSGE model

Standard precedure

S 1. Summarize a macro model with equilibrium conditions, measurement

equations, etc.

S 2. Log-linearization the equations around steady state, represent the model

by a linear rational expectation model (LRM) with deep parameters 6.

Fo(6) [ i’ ] = T1(0)E; [ St ] +2(6)Si—1 + M3(0)er

t t+1

S; state variables, P; policy variables.
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Applic

Estimate a Linearized DSGE model

Standard precedure

S 3. Solve the LREM, combine with measurement equations and attain a

state-space representation.

St = A(0)Si—1 + B(0)et
Y: = C(0)St—1 + D(0)e:

S 4. Use a generic filter to compute the likelihood p(y | 6) through the

state-space model.

S 5. Start from a prior distribtuion 7y, update by MCMC methods using the

likelihood and obtain the posterior distribution of 8, 7y,

13/41



Motivation Contribution Setup

©0000000

Applic

Setup

Assumption (1)
Linearized DSGE model with Gaussian shocks.

® |inear State-space representation
Assumption (2)
Solution to the LREM is unique, i.e. no indeterminacy.

e Coefficient of SS uniquely determined by solution.
Assumption (3)
Deep parameters enter LREM in an algebraic expression way.

* eg. NKPC in Gali (2015): 7 = BE¢ {ma1} + A (o + £52 ) Ju

14/41



Motivation Contribution Setup
00000000  0000C 0®000000

Applic

Definitions

Definition (OE)
Parameter @ is observationally equivalent to 6 if they yield the same data

generating process.

® A property independent of data

Definition (ldentification)

0 is identified if it has no observationally equivalent parameters.

e Define the equivalence mapping K : © — 2°, thatis, p(y | 6) = p(y | 9)
for all y, if and only if K(8) = K(9).
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Algorithm

S.1 Run standard Bayesian estimation, get posterior draws of 6 from a given

prior 7.

S.2* Optimize over the observationally equivalent set of parameters of this
draw, find the lower and upper bounds of parameters of interest.

® Finding the OE set of a given parameter involves solving a polynomial
system.

S.3 Average the lower/upper bounds for means and quantiles.
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OE characterization

Assumptions

Define N = APC’' + BX.D', where P = E(5:S}),

Assumption (Stability)

Forevery 6 € © and for any z € C, det(zl,; — A) = 0 implies | z |< 1.

Assumption (Stochastic Minimality)

For every 6 € ©, matrices O have full column rank and C have full row rank,
i.e. rank(O) = rank(C) = ns. Where O = (C' A'C' ... A"s~'(C),
C=(N AN ... A's7'N).
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OE characterization

Theorem (KK23)

Let stability and stochastic minimality assumptions hold. Then 6 ~ 0 if and

only if
1)A=TAT ',
2)C=CT ',

3)AQA - Q=T 'BEB'T ' - BB,

4) CQC' = DED' - Dx D,

5 AQC' =T 'BED - BxD/,

for some nonsingular n. x n. matrix T and symmetric n. x n. matrix Q. In

addition, if @ ~ 0 then both T and Q are unique.

18/41



Setup
00000@00

OE characterization
Brief

e In order to use KK23, given a parameter 6, we need to link it to the

solutions.

e Attain the solution, S; = A(0)S;_1 + B(0)er and P, = F(0)S;_1 + G(0)et,
plug in LRM, equate coefficients on both sides in terms of S;_+, and ;.

FA+THF —T5(AY —TPFA =T
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OE characterization

Brief

Therefore, we can solve for observationally equivalent g following the

procedure

S.1 Given 6, solve for state-space coefficients.

S.2 Characterize # by KK23 and the previous equations, unknowns include
(not limit to) 4, B, G.

S.3 Reduce a polynomial system to its reduced Grobner basis.
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Grobner Basis

A reduced Grdbner basis is a set of multivariate polynomials enjoying certain
properties that allow simple algorithmic solutions. For example, the

equations:

X —2xy, x*—2y®+x.
has a reduced Grébner basis

2 2 X
X, Xy, Yy >

® Any zero of a Grbébner basis is also a zero of the original system.

* Reduced Grobner bases are unique for any given set of polynomials and

any monomial ordering.
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Additional Assumptions

Assumption (Measurability)

The equivalence mapping K is Effros measurable, that is,
K= (F)={0:K(O)NnF # 0} € Aforeach F € F.
Assumption (Continuity)

(1) K is a continuous correspondence at 6,.

(2) Parameters of interestn : © — n(®©) is continuous.

Assumption (Regularity)

Let the prior of deep parameters 0, wg, be absolutely continuous with respect

to a o-finite measure on (©, A), and 7y (©) = 1.
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Multiple priors

¢ Define the class of all priors that the marginal distribution for K coincides

with the given mg, i.e.,
Mo(mk) = {mo : m9 ({0 : K(0) € B}) = nk(B), for B € B(F)}

+ The class of priors induce the same prior predictive distribution
p(y) = [ p(y | 0)dms.

x The class of priors have the same push-forward measure 7.
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Robust Distributions

Theorem (Posterior Mean)

For a given g, let measurability and regularity assumptions hold, that is,
given a prior g absolutely continuous with respect to a o-finite measure, we
have a push-forward measure wx of m¢ under K that is also absolutely

continuous. Define

3

7°(0) = su 0, n (@)= inf n(®
(9) gleKtzg)n( ), n"(9) G,GK(B)U( )

Then, the set of posterior means is characterized by

sup  Egjy [n(0)] = Egyv [77(0)], inf  Egy [n(0)] = Egpy [n7(0)]

oy EMgy molyE€Mg|y

where Mgy collects the posteriors of Ny (k) for a given ni.
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Robust Distributions

Definitions for the proof

In random set theory (Molchanov and Molinari (2018)),

Definition (Selection)

Let X : & = H be a closed random set defined on the probability space
(®,B,7m4v), and £(¢) : ® — H be its measurable selection, i.e.,

&(p) € X(¢), 7r¢‘y-a.s. Let S'(X) be the class of integrable measurable
selections, S'(X) = {£: &(¢) € X(¢), gy -a.s., Egy(|[€]) < oo}

Definition (Aumann expectation)

The Aumann expectation of X is defined as £/ (X) = {Eyv(§) : £ € S'(X)}
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Robust Distributions

Proof

First show that sup.,, ,.cn, , Bolv [1(6)] = Exiy [supjscenncr) n(0)]

Note that

{Eoik [n(9)] : ok (K(0)) = 1} = co({n(0),0 € K})

A selection 7y can be viewed as a selection from co ({n(),0 € K}).

The set {Eg‘y(n(e)) = EK\Y [Egu{(?’](@)” I ek € I'I@‘K} agrees with
E,?‘y [co({n(6),0 € K})] by the definition of the Aumann integral.

Let the selection be supyce.ocky 7(0) then its done.
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Robust Distributions

Proof
o Then, show that Exy [sup{%@:ge,{} n(é’)] — Eyyy [7(0)]

* Write out the expectation to integration, we have LHS equals

/ sup 77(9)d7TK|Y:/ sup n(0")dmo)y,
2

© {0cO:0eK} o {6/co:0"cK(0)}

where the second equality follows from a change of variable.
® RHSis
B (700 = [ 7 0)dmy.

which equals to LHS because by definition,

77(0) = sup n(0)
0’ €K(0)
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Robust Distributions

Theorem (Consistency)

Let, in addition continuity assumption hold, assume further that induced prior
7k leads to a consistent posterior, and © c RP, H ¢ RY for some p, q < co
are compact spaces. Then the Hausdorff distance between the set of
posterior means and the convex hull of true identified set goes to zero almost

surely as T increases, i.e.,

lim_dhy (Eelyr[(n*(O),ﬁ*(G))], (77*(90),77*(90)>> -0, p(Y™|6)-as.
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Inferenece

Assumption (Convergence)

(i) Letf denote an element of the set of maximum likelihood estimators,

e (n*(e) (9)) YT = N(0,%), as T — co,p(Y™ | ) -a.q1)

7 (0) =7 ()
s 7" (0) = 0" (60) 160 = N(0,%), as T — . )
7" (6) = 77" (o)

(i) For the robust credible region [ﬂ; J2 qi_a /2},

for some constantc as T — oo.

29/41



Motivation Contribution Setup Theory Application
00000000 00000 00000000 0O0000000e 00000000000

Inference

Theorem (Coverage)

Under some regularity assumptions and Assumption Convergence,

lim_inf Pyrig, (n(K(00)) € [ 0 i—ae]) 21— )
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Example 1: Cochrane Model

Consider the full model

Xt = pXt—1 +€lv |p| < 1761 ~ N(Ovaé)
it = r+ Eimeq

I}:I’—|—’¢7’l’t+Xt, ¢>1

Structural parameters are 6 = (p, ¥, o). The solution is equivalent to a AR(1)
setting
er, e~ N(0,0%)

Tt = PTt—1 +

1
Yv—0p
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Example 1: Inference

Table: Estimated Identified Set

True value Identified set Range of posterior mean

Oe 1 (0.2, 0) (0.21,00)
o 1.8 (1,00) (1.00, o0)
p 0.8 0.8 0.80

® Estimation of range of posterior means approximates the identified set

well.
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Example 1: Inference

" Impulse Response of = with prior 1 g Impulse Response of = with prior 2
-0.5 -0.5
=i -1
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[C190% Bayesian Interval [C190% Bayesian Interval
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Impulse Response of =
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Example 1: Inference

Impulse Response of = with prior 1

Impulse Response of 7 with prior 2

05
-1
1.5
True IR True IR
Posterior mean -2 Posterior mean
[C190% Bayesian Interval 1 90% Bayesian Interval
25

Impulse Response of 7

True IR
~ T Nidentified set of IR _
Range of Posterior Mean IR _
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Example 1: Inference

Impulse Response of = with prior 1 Impulse Response of 7 with prior 2

05 05
-1 -1
1.5
TrueIRT True\RW
-2 Posterior mean —— Posterior mean
[C190% Bayesian Interval [C190% Bayesian Interval
25
0 5 10 15 20
0 —
T
2 4
4+ |
True IRv‘
ol iIdentified set of IR _ i
Range of Posterior Mean IR _
190% Robust Bayesian CR
8 n n T
0 14 16 18 20
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Example 2: Three-equation New Keynesian

Consider the following model,

Yt =EtYr1 — % (it — Eemepr) +ep
mt = BEimte1 + KYt + €t
it = pit—1 + (1 = p) (P=7t + Py Yi) + Rt
e~ N(,1); j=y,mR
where 7 inflation, y: the output gap, i; the nominal interest rate.
K= w(a + v) is the slope of the Philips curve. Since (¢, 7) only

enter the equation system via «, 1 can be jointly unidentified with 7. The

identification problem here is purely mathematical and is almost trivial.
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Example 2: An and Shorfheide (2007)

1.
Ve = Belyen] = — (e = Ee[mee] + Ec [2e4]) + e = Bt [gean]
7t = BEt [re1] + 5 (Ve — Gt)

it = prit—1 + (1 = pr) =7t + (1 — pr) Yy (Ve — G1) + €Rrt

Zt = pzZt—1 T €z, Gt = Pg9it—1 + Eg,t-

® (Y, 1y, pr,oR) are not identified.

e All the shocks, either has no effect on =; or y:, or affect =: and y; in the
same direction.
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Example 2: A Cost-push Shock Model

To generate meaningful trade-off between output gap and inflation,

1.
Ve =Et [Yi1] — p (it — Et [me44]) + gt — Et [Gi41]
7t = BEt [mea] + 6 (Ve — gt) + U
it = pri—1 + (1 = pR) Yame + (1 — pR) Yy (Ve — G1) +eRt

Ut = pult—1 +eut, gt = pggi—1 + €gt-

® Positive cost-push shock u — y |, 7 1

® Positive monetary policy shock eg — y |, 7 |
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Example 2: Policy

Table: Policy Comparison under Different Distributions and Weights

os =1 & =3 =10
(Y, y) post1 post2 post1 post2 posti1 post2
(1.5, 0) v v v
(1.5, 0.125) v v v
T T
(5, 0) v v v v
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Smets and Wouters 2007
True value  Posterior mean  (Robust) Bayesian CR

= % 0.17 0.17 [0.16,0.18]
02 = 25 0.41 0.41 [0.41,0.42]
as = #“M 0.13 0.13 [0.12,0.14]
s = 2% 0.12 0.13 [0.13,0.13]
as = oyt 0.50 0.50 [0.50,0.50]
s = G 0.09 0.09 [0.08,0.10]
ar = By~7¢(1 - 6) 0.97 0.97 [0.97,0.97]
ag=(1—6)y"" 0.97 0.97 [0.97,0.97]
as = (1—ag)(1+ By 7)p? 0.29 0.31 [0.28,0.34]
a0 = e, 0.19 0.16 [0.14,0.19]
an = ng‘%p 0.80 0.83 [0.81,0.86]
arz = i el 0.02 0.02 [0.02,0.02]
g = ey 3.41 3.37 [3.29,3.44]
g = # 0.29 0.29 [0.27,0.31]
s = ‘:f;‘w%éw 0.79 0.79 [0.77,0.81]
e = M% 0.00 0.01 [0.01,0.01]

® Same setup as kk23. Same identification results, but "globally".
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Conclusion

In this paper, | address the following issues:

e Estimation of highly structural set-identified models can be challenging.
medskip
+ An Bayesian algorithm that is generally applicable is proposed.

e Estimation results of set-identified DSGE models are sensitive to choice
of priors (Identification)

+ Use a robust Bayesian algorithm, | can pick any ‘reasonable’ prior and obtain
robust results.
+ | also prove it asymptotically finds the frequentist identified set.

® Researchers are silent about non-identified DSGE models
(Policy-implication)
+ The collection of posterior means of parameters of interest is given.
+ One may still have nontrivial conclusions even when the model suffers

identification problems.
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