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Motivation Contribution Setup Theory Application

Motivation

• Set-identified structural models are ubiquitous.
∗ E.g., DSGE models are widely used:

∗∗ U.S. Fed, Bank of Canada, Sveriges Riksbank, IMF etc.

∗∗ They are also super relevant for policy-making.

• Analysis of these models is challenging because of ‘identification’:

∗ DSGE models are micro-founded, rich with parameters.

∗ Multiple parameter combinations may yield same data generating process.

∗ Standard Bayesian methods can be sensitive to prior choices.
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Motivation - Estimation

A monetary policy model (Cochrane 2011, JPE). In its AR(1) form

πt = ρπt−1 +
1

φπ − ρ
εt , φπ > 1, |ρ| < 1, εt ∼ N(0, σ2

ε)

parameter vector (φπ, σε, ρ), Taylor rule parameter φπ, monetary policy

disturbance coefficient ρ, its standard error σε. Inflation rate πt is observed.
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Motivation - Estimation

Table: Prior and Posterior Distribution of Structural Parameters

True value Prior distribution Posterior distribution

Distr. Mean St. Dev. Mode Mean 5 percent 95 percent

σε 1 Uniform 4 2.02 5.82 4.43 1.94 2.02

φπ 1.8 Uniform 4 1.73 6.49 4.91 2.78 7.00

ρ 0.8 Uniform 0.75 0.09 0.82 0.81 0.74 0.87
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Likelihood

Figure: Likelihood function while fix ρ = 0.8, T = 1, 000, 000

• Maxima along the σε = φπ − 0.8 line
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Prior Sensitivity

• The posterior of σε and φπ are extremely informative even if only σε
φπ−0.8

is identified.

• Why? Joint likelihood density more concentrated on areas with higher

values of φπ and σε.
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Motivation - Estimation

(a) Impulse responses using prior setup 1 (b) Impulse responses using prior setup 2

• 1-unit monetary policy disturbance shock on inflation.

• Impulse response with two different priors (that has the same distribution

over (ρ, σε
φ−ρ )).
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Motivation - Policy Analysis

Suppose a central bank using the following small-sized model

yt = Et [yt+1]− 1
σ

(it − Et [πt+1]) + gt − Et [gt+1]

πt = βEt [πt+1] + κ (yt − gt ) + ut

it = ρR it−1 + (1− ρR)ψππt + (1− ρR)ψy (yt − gt ) + εR,t

ut = ρuut−1 + εu,t , gt = ρggt−1 + εg,t .

is trying to use the estimated parameter (history)

(σ, β, κ, ψπ, ψy , ρR , ρg , ρu, σR , σg , σu), to choose a policy rule

i∗t = ψππt + ψy (yt − gt )

that minimize welfare loss in the form of π2
t + αx y2

t .
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Motivation - Policy Analysis

• Now consider two policies (ψπ, ψy ) = (1.5, 0), and (1.5, 0.125)

Table: Policy Comparison under Different Distributions and Weights

1
αx

= 1 1
αx

= 3 1
αx

= 10

(ψπ, ψy ) post 1 post 2 post 1 post 2 post 1 post 2

(1.5, 0) X X X

(1.5, 0.125) X X X

• Policy choices are sensitive to prior choices as well.
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Research Question

• Set-identification for parameters of interest.

∗ sensitivity analysis: What’s the identified set of parameters? How much can

the posterior mean change as I change the prior?

• Given, for example, a DSGE model and observed data,

∗ policy implications: Is it always possible to support a policy rule robust of

priors?
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Literature and Contributions

• Robust Bayesian analysis: Berger et al. (1994), Berger, Insua, and

Ruggeri (2000), Gustafson (2015), Giacomini and Kitagawa (2021), Ke,

Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and Read (2022)

• Identification in DSGE models: Canova and Sala (2009), Iskrev (2010),

Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and Tkachenko (2017),

Kociecki and Kolasa (2018), Kocięcki and Kolasa (2023)
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Literature and Contributions

• Frequentist inference for set-identified models: Horowitz and

Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov, Hong,

and Tamer (2007), Stoye (2009), Romano and Shaikh (2010), Kaido, Molinari,

and Stoye (2019)

• Bayesian inference for set-identified models: Baumeister and

Hamilton (2015), Kline and Tamer (2016), Chen, Christensen, and Tamer (2018)

• My contribution:

• A new Bayesian algorithm that can be applied to general structural models

for estimation and inference.
• I work on “global” identification rather than identification at certain point

(KK23).
• Method applied to DSGE models, whereas GK21’s method only applicable

to SVAR.
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Estimate a Linearized DSGE model
Standard precedure

S 1. Summarize a macro model with equilibrium conditions, measurement

equations, etc.

S 2. Log-linearization the equations around steady state, represent the model

by a linear rational expectation model (LRM) with deep parameters θ.

Γ0(θ)

 St

Pt

 = Γ1(θ)Et

 St+1

Pt+1

+ Γ2(θ)St−1 + Γ3(θ)εt

St state variables, Pt policy variables.
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Estimate a Linearized DSGE model
Standard precedure

S 3. Solve the LREM, combine with measurement equations and attain a

state-space representation.

St = A(θ)St−1 + B(θ)εt

Yt = C(θ)St−1 + D(θ)εt

S 4. Use a generic filter to compute the likelihood p(y | θ) through the

state-space model.

S 5. Start from a prior distribtuion πθ, update by MCMC methods using the

likelihood and obtain the posterior distribution of θ, πθ|y .
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Setup

Assumption (1)

Linearized DSGE model with Gaussian shocks.

• Linear State-space representation

Assumption (2)

Solution to the LREM is unique, i.e. no indeterminacy.

• Coefficient of SS uniquely determined by solution.

Assumption (3)

Deep parameters enter LREM in an algebraic expression way.

• e.g. NKPC in Gali (2015): πt = βEt {πt+1}+ λ
(
σ + ϕ+α

1−α

)
ỹt
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Definitions

Definition (OE)

Parameter θ̄ is observationally equivalent to θ if they yield the same data

generating process.

• A property independent of data

Definition (Identification)

θ is identified if it has no observationally equivalent parameters.

• Define the equivalence mapping K : Θ→ 2Θ, that is, p(y | θ) = p(y | θ̄)

for all y , if and only if K (θ) = K (θ̄).

15 / 41



Motivation Contribution Setup Theory Application

Algorithm

S.1 Run standard Bayesian estimation, get posterior draws of θ from a given

prior πθ.

S.2* Optimize over the observationally equivalent set of parameters of this
draw, find the lower and upper bounds of parameters of interest.

• Finding the OE set of a given parameter involves solving a polynomial

system.

S.3 Average the lower/upper bounds for means and quantiles.
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OE characterization
Assumptions

Define N = APC′ + BΣD′, where P = E(StS′t ),

Assumption (Stability)

For every θ ∈ Θ and for any z ∈ C, det(zInS − A) = 0 implies | z |< 1.

Assumption (Stochastic Minimality)

For every θ ∈ Θ, matrices O have full column rank and C have full row rank,

i.e. rank(O) = rank(C) = nS . Where O ≡ (C′ A′C′ · · · A′nS−1C′),

C ≡ (N AN · · · AnS−1N).
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OE characterization

Theorem (KK23)

Let stability and stochastic minimality assumptions hold. Then θ ∼ θ̄ if and

only if

1) Ā = TAT−1,

2) C̄ = CT−1,

3) AQA′ −Q = T−1B̄Σ̄B̄′T ′−1 − BΣB′,

4) CQC′ = D̄Σ̄D̄′ − DΣD′,

5) AQC′ = T−1B̄Σ̄D̄′ − BΣD′,

for some nonsingular nε × nε matrix T and symmetric nε × nε matrix Q. In

addition, if θ ∼ θ̄ then both T and Q are unique.
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OE characterization
Brief

• In order to use KK23, given a parameter θ̄, we need to link it to the

solutions.

• Attain the solution, St = Ā(θ)St−1 + B̄(θ)εt and Pt = F̄ (θ)St−1 + Ḡ(θ)εt ,

plug in LRM, equate coefficients on both sides in terms of St−1, and εt .

Γ̄s
0Ā + Γ̄p

0F̄ − Γ̄s
1(Ā)2 − Γ̄p

1F̄ Ā = Γ̄2

Γ̄s
1ĀB̄ + Γ̄p

1F̄ B̄ − Γ̄s
0B̄ + Γ̄3 = Γ̄p

0Ḡ
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OE characterization
Brief

Therefore, we can solve for observationally equivalent θ̄ following the

procedure

S.1 Given θ, solve for state-space coefficients.

S.2 Characterize θ̄ by KK23 and the previous equations, unknowns include

(not limit to) θ̄, B̄, Ḡ.

S.3 Reduce a polynomial system to its reduced Grobner basis.
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Gröbner Basis

A reduced Gröbner basis is a set of multivariate polynomials enjoying certain

properties that allow simple algorithmic solutions. For example, the

equations:

x3 − 2xy , x2 − 2y2 + x .

has a reduced Gröbner basis

x2, xy , y2 − x
2
.

• Any zero of a Gröbner basis is also a zero of the original system.

• Reduced Gröbner bases are unique for any given set of polynomials and

any monomial ordering.
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Additional Assumptions

Assumption (Measurability)

The equivalence mapping K is Effros measurable, that is,

K−(F ) ≡ {θ : K (θ) ∩ F 6= ∅} ∈ A for each F ∈ F .

Assumption (Continuity)

(1) K is a continuous correspondence at θ0.

(2) Parameters of interest η : Θ→ η(Θ) is continuous.

Assumption (Regularity)

Let the prior of deep parameters θ, πθ, be absolutely continuous with respect

to a σ-finite measure on (Θ,A), and πθ(Θ) = 1.

22 / 41



Motivation Contribution Setup Theory Application

Multiple priors

• Define the class of all priors that the marginal distribution for K coincides

with the given πK , i.e.,

Πθ(πK ) = {πθ : πθ ({θ : K (θ) ∈ B}) = πK (B), for B ∈ B(F)}

∗ The class of priors induce the same prior predictive distribution

p(y) =
∫

p(y | θ)dπθ.

∗ The class of priors have the same push-forward measure πK .
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Robust Distributions

Theorem (Posterior Mean)

For a given πθ, let measurability and regularity assumptions hold, that is,

given a prior πθ absolutely continuous with respect to a σ-finite measure, we

have a push-forward measure πK of πθ under K that is also absolutely

continuous. Define

η∗(θ) = sup
θ′∈K (θ)

η(θ′), η∗(θ) = inf
θ′∈K (θ)

η(θ′)

Then, the set of posterior means is characterized by

sup
πθ|Y∈Πθ|Y

Eθ|Y [η(θ)] = Eθ|Y [η∗(θ)] , inf
πθ|Y∈Πθ|Y

Eθ|Y [η(θ)] = Eθ|Y
[
η∗(θ)

]
where Πθ|Y collects the posteriors of Πθ(πK ) for a given πK .
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Robust Distributions
Definitions for the proof

In random set theory (Molchanov and Molinari (2018)),

Definition (Selection)

Let X : Φ⇒ H be a closed random set defined on the probability space(
Φ,B, πφ|Y

)
, and ξ(φ) : Φ→ H be its measurable selection, i.e.,

ξ(φ) ∈ X (φ), πφ|Y -a.s. Let S1(X ) be the class of integrable measurable

selections, S1(X ) =
{
ξ : ξ(φ) ∈ X (φ), πφ|Y -a.s., Eφ|Y (‖ξ‖) <∞

}
.

Definition (Aumann expectation)

The Aumann expectation of X is defined as EA
φ|Y (X ) ≡

{
Eφ|Y (ξ) : ξ ∈ S1(X )

}

25 / 41



Motivation Contribution Setup Theory Application

Robust Distributions
Proof

• First show that supπθ|Y∈Πθ|Y
Eθ|Y [η(θ)] = EK |Y

[
sup{θ∈Θ:θ∈K} η(θ)

]
• Note that

{
Eθ|K [η(θ)] : πθ|K (K (θ)) = 1

}
= co ({η(θ), θ ∈ K})

• A selection πθ|K can be viewed as a selection from co ({η(θ), θ ∈ K}).

• The set
{

Eθ|Y (η(θ)) = EK |Y
[
Eθ|K (η(θ))

]
: πθ|K ∈ Πθ|K

}
agrees with

EA
K |Y [co ({η(θ), θ ∈ K})] by the definition of the Aumann integral.

• Let the selection be sup{θ∈Θ:θ∈K} η(θ) then its done.
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Robust Distributions
Proof

• Then, show that EK |Y

[
sup{θ∈Θ:θ∈K} η(θ)

]
= Eθ|Y [η∗(θ)]

• Write out the expectation to integration, we have LHS equals∫
2Θ

sup
{θ∈Θ:θ∈K}

η(θ)dπK |Y =

∫
Θ

sup
{θ′∈Θ:θ′∈K (θ)}

η(θ′)dπθ|Y ,

where the second equality follows from a change of variable.

• RHS is

Eθ|Y [η̄∗(θ)] =

∫
Θ

η̄∗(θ)dπθ|Y ,

which equals to LHS because by definition,

η∗(θ) = sup
θ′∈K (θ)

η(θ′)
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Robust Distributions

Theorem (Consistency)

Let, in addition continuity assumption hold, assume further that induced prior

πK leads to a consistent posterior, and Θ ⊂ Rp,H ⊂ Rq for some p, q <∞

are compact spaces. Then the Hausdorff distance between the set of

posterior means and the convex hull of true identified set goes to zero almost

surely as T increases, i.e.,

lim
T→∞

dH

(
Eθ|Y T

[ (
η∗(θ), η̄∗(θ)

) ]
,
(
η∗(θ0), η̄∗(θ0)

))
→ 0, p (Y∞ | θ0) -a.s.
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Inferenece

Assumption (Convergence)

(i) Let θ̂ denote an element of the set of maximum likelihood estimators,

√
T

η∗(θ)− η∗(θ̂)

η∗(θ)− η∗(θ̂)

 |Y T ⇒ N (0,Σ), as T →∞, p (Y∞ | θ0) -a.s. ,(1)

√
T

η∗(θ̂)− η∗(θ0)

η∗(θ̂)− η∗(θ0)

 | θ0 ⇒ N (0,Σ), as T →∞. (2)

(ii) For the robust credible region
[
q∗
α/2

, q∗1−α/2

]
,

ĉT ≡
√

T

 q∗
α/2
− η∗(θ̂)

q∗1−α/2 − η
∗(θ̂)

 p−→ c (3)

for some constant c as T →∞.

Here,⇒ denotes weak convergence, and
p−→ denotes convergence in

probability. Assumption ?? reduces the event η(K (θ)) ⊂ Cα to the

inequalities q∗
α/2

< η∗(θ), and η∗(θ) < q∗1−α/2.
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Inference

Theorem (Coverage)

Under some regularity assumptions and Assumption Convergence,

lim inf
T→∞

PY T |θ0

(
η(K (θ0)) ⊂

[
q∗
α/2

, q∗1−α/2

])
≥ 1− α. (4)
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Example 1: Cochrane Model

Consider the full model

xt = ρxt−1 + εt , |ρ| < 1, εt ∼ N(0, σε)

it = r + Etπt+1

it = r + ψπt + xt , ψ > 1

Structural parameters are θ = (ρ, ψ, σε). The solution is equivalent to a AR(1)

setting

πt = ρπt−1 +
1

ψ − ρεt , εt ∼ N(0, σ2
ε)

with φ = (ρ, σε
ψ−ρ )

31 / 41



Motivation Contribution Setup Theory Application

Example 1: Inference

Table: Estimated Identified Set

True value Identified set Range of posterior mean

σe 1 (0.2,∞) (0.21,∞)

φπ 1.8 (1,∞) (1.00,∞)

ρ 0.8 0.8 0.80

• Estimation of range of posterior means approximates the identified set

well.
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Example 1: Inference
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Example 1: Inference
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Example 1: Inference
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Example 2: Three-equation New Keynesian

Consider the following model,

yt = Etyt+1 −
1
σ

(it − Etπt+1) + εyt

πt = βEtπt+1 + κyt + επt

it = ρit−1 + (1− ρ) (φππt + φy yt ) + εRt

εjt ∼ N(0, 1); j = y , π,R

where πt inflation, yt the output gap, it the nominal interest rate.

κ = (1−τ)(1−βτ)
τ

(σ + ψ) is the slope of the Philips curve. Since (ψ, τ) only

enter the equation system via κ, ψ can be jointly unidentified with τ . The

identification problem here is purely mathematical and is almost trivial.
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Example 2: An and Shorfheide (2007)

yt = Et [yt+1]− 1
σ

(it − Et [πt+1] + Et [zt+1]) + gt − Et [gt+1]

πt = βEt [πt+1] + κ (yt − gt )

it = ρR it−1 + (1− ρR)ψππt + (1− ρR)ψy (yt − gt ) + εR,t

zt = ρzzt−1 + εz,t , gt = ρggt−1 + εg,t .

• (ψπ, ψy , ρR , σR) are not identified.

• All the shocks, either has no effect on πt or yt , or affect πt and yt in the

same direction.
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Example 2: A Cost-push Shock Model

To generate meaningful trade-off between output gap and inflation,

yt = Et [yt+1]− 1
σ

(it − Et [πt+1]) + gt − Et [gt+1]

πt = βEt [πt+1] + κ (yt − gt ) + ut

it = ρR it−1 + (1− ρR)ψππt + (1− ρR)ψy (yt − gt ) + εR,t

ut = ρuut−1 + εu,t , gt = ρggt−1 + εg,t .

• Positive cost-push shock u −→ y ↓, π ↑

• Positive monetary policy shock εR −→ y ↓, π ↓
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Example 2: Policy

Table: Policy Comparison under Different Distributions and Weights

1
νκ

= 1 1
νκ

= 3 1
νκ

= 10

(ψπ, ψy ) post 1 post 2 post 1 post 2 post 1 post 2

(1.5, 0) X X X

(1.5, 0.125) X X X

(1.5, 1) X X

(5, 0) X X X X
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Smets and Wouters 2007
True value Posterior mean (Robust) Bayesian CR

α1 = (γ−1+δ)α

β−1γσc−1+δ
0.17 0.17 [0.16,0.18]

α2 = λγ−1

1+λγ−1 0.41 0.41 [0.41,0.42]

α3 = (1−α)(σc−1)

φwσc (1+λγ−1)(1−α1−gy )
0.13 0.13 [0.12,0.14]

α4 = 1−λγ−1

(1+λγ−1)σc
0.12 0.13 [0.13,0.13]

α5 = 1
1+βγ1−σc 0.50 0.50 [0.50,0.50]

α6 = 1
(1+βγ1−σc )ϕγ2 0.09 0.09 [0.08,0.10]

α7 = βγ−σc (1− δ) 0.97 0.97 [0.97,0.97]

α8 = (1− δ)γ−1 0.97 0.97 [0.97,0.97]

α9 = (1− α8)(1 + βγ1−σc )ϕγ2 0.29 0.31 [0.28,0.34]

α10 =
ιp

1+βγ1−σc ιp
0.19 0.16 [0.14,0.19]

α11 = βγ1−σc

1+βγ1−σc ιp
0.80 0.83 [0.81,0.86]

α12 =
(1−βγ1−σc ξp)(1−ξp)

(1+βγ1−σc ιp)ξp [(φp−1)εp+1]
0.02 0.02 [0.02,0.02]

α13 = 1
1−λγ−1 3.41 3.37 [3.29,3.44]

α14 = ιw
1+βγ1−σc 0.29 0.29 [0.27,0.31]

α15 = 1+βγ1−σc ιw
1+βγ1−δc 0.79 0.79 [0.77,0.81]

α16 = (1−βγ1−σc ξw )(1−ξw )

(1+βγ1−σc )ξw [(φw−1)εw +1]
0.00 0.01 [0.01,0.01]

• Same setup as kk23. Same identification results, but "globally".
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Conclusion

In this paper, I address the following issues:

• Estimation of highly structural set-identified models can be challenging.
medskip

∗ An Bayesian algorithm that is generally applicable is proposed.

• Estimation results of set-identified DSGE models are sensitive to choice
of priors (Identification)

∗ Use a robust Bayesian algorithm, I can pick any ‘reasonable’ prior and obtain

robust results.

∗ I also prove it asymptotically finds the frequentist identified set.

• Researchers are silent about non-identified DSGE models
(Policy-implication)

∗ The collection of posterior means of parameters of interest is given.

∗ One may still have nontrivial conclusions even when the model suffers

identification problems.
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