

Setup 00000000 Theory 000000000 Application 00000000000

Bayesian Sensitivity Analysis for Set-identified Structural Models

Yizhou Kuang[†]

[†]Department of Economics, University of Manchester

Last updated: May 8th, 2024

Set-identified structural models are ubiquitous.

- * E.g., DSGE models are widely used:
 - ** U.S. Fed, Bank of Canada, Sveriges Riksbank, IMF etc.
 - ** They are also super relevant for policy-making.

Analysis of these models is challenging because of 'identification':

- * DSGE models are micro-founded, rich with parameters.
- * Multiple parameter combinations may yield same data generating process.
- * Standard Bayesian methods can be sensitive to prior choices.

Motivation	Contribution	Setup	Theory	Application
0000000	00000	0000000	00000000	00000000000

Motivation - Estimation

A monetary policy model (Cochrane 2011, JPE). In its AR(1) form

$$\pi_t = \rho \pi_{t-1} + \frac{1}{\phi_{\pi} - \rho} \epsilon_t, \quad \phi_{\pi} > 1, |\rho| < 1, \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$$

parameter vector ($\phi_{\pi}, \sigma_{\epsilon}, \rho$), Taylor rule parameter ϕ_{π} , monetary policy disturbance coefficient ρ , its standard error σ_{ϵ} . Inflation rate π_t is observed.

Notivation	
00000000	

Contributio

Setup 00000000 Theory 000000000 Application 00000000000

Motivation - Estimation

Table: Prior and Posterior Distribution of Structural Parameters

	True value	Prior distribution			Posterior distribution			
		Distr.	Distr. Mean St. Dev.		Mode	Mode Mean 5 per		95 percent
σ_{ϵ}	1	Uniform	4	2.02	5.82	4.43	1.94	2.02
ϕ_{π}	1.8	Uniform	4	1.73	6.49	4.91	2.78	7.00
ρ	0.8	Uniform	0.75	0.09	0.82	0.81	0.74	0.87

Contributio

Setup 00000000 Theory 000000000 Application 0000000000

Likelihood

• Maxima along the $\sigma_{\epsilon} = \phi_{\pi} - 0.8$ line

Motivation	Contribution	Setup	Theory	Application
00000000	00000	0000000	00000000	00000000000

Prior Sensitivity

- The posterior of σ_{ϵ} and ϕ_{π} are extremely informative even if only $\frac{\sigma_{\epsilon}}{\phi_{\pi}-0.8}$ is identified.
- Why? Joint likelihood density more concentrated on areas with higher values of φ_π and σ_ε.

Motivation	Contribution	Setup	Theory	Application
00000000	00000	0000000	00000000	00000000000

Motivation - Estimation

- 1-unit monetary policy disturbance shock on inflation.
- Impulse response with two different priors (that has the same distribution over $(\rho, \frac{\sigma_{\epsilon}}{\phi-\rho})$).

Contributio

Setup 00000000 Theory 000000000 Application 00000000000

Motivation - Policy Analysis

Suppose a central bank using the following small-sized model

$$y_{t} = \mathbb{E}_{t} [y_{t+1}] - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} [\pi_{t+1}]) + g_{t} - \mathbb{E}_{t} [g_{t+1}]$$
$$\pi_{t} = \beta \mathbb{E}_{t} [\pi_{t+1}] + \kappa (y_{t} - g_{t}) + u_{t}$$
$$i_{t} = \rho_{B} i_{t-1} + (1 - \rho_{B}) \psi_{\pi} \pi_{t} + (1 - \rho_{B}) \psi_{y} (y_{t} - g_{t}) + \varepsilon_{B,t}$$
$$u_{t} = \rho_{u} u_{t-1} + \varepsilon_{u,t}, \quad g_{t} = \rho_{g} g_{t-1} + \varepsilon_{g,t}.$$

is trying to use the estimated parameter (history)

 $(\sigma, \beta, \kappa, \psi_{\pi}, \psi_{y}, \rho_{R}, \rho_{g}, \rho_{u}, \sigma_{R}, \sigma_{g}, \sigma_{u})$, to choose a policy rule

$$i_t^* = \psi_\pi \pi_t + \psi_y \left(y_t - g_t \right)$$

that minimize welfare loss in the form of $\pi_t^2 + \alpha_x y_t^2$.

Motivation - Policy Analysis

• Now consider two policies $(\psi_{\pi}, \psi_{y}) = (1.5, 0)$, and (1.5, 0.125)

Table: Policy Comparison under Different Distributions and Weights

	$\frac{1}{\alpha_X}$	= 1	$\frac{1}{\alpha_x} = 3$		$\frac{1}{\alpha_x} = 10$	
(ψ_{π},ψ_{y})	post 1	post 2	post 1	post 2	post 1	post 2
(1.5, 0)			\checkmark		\checkmark	\checkmark
(1.5, 0.125)	\checkmark	\checkmark		\checkmark		

Policy choices are sensitive to prior choices as well.

ion	Cor
0000	•C

ntribution

Setup 00000000 Theory 000000000 Application 00000000000

Research Question

- Set-identification for parameters of interest.
 - * sensitivity analysis: What's the identified set of parameters? How much can the posterior mean change as I change the prior?
- Given, for example, a DSGE model and observed data,
 - * policy implications: Is it always possible to support a policy rule robust of priors?

tion	
0000	

Contribution

Setup 00000000 Theory 000000000 Application 00000000000

Literature and Contributions

- Robust Bayesian analysis: Berger et al. (1994), Berger, Insua, and Ruggeri (2000), Gustafson (2015), *Giacomini and Kitagawa (2021)*, Ke, Montiel Olea, and Nesbit (2022), Giacomini, Kitagawa, and Read (2022)
- Identification in DSGE models: Canova and Sala (2009), Iskrev (2010), Komunjer and Ng (2011), Qu and Tkachenko (2012), Qu and Tkachenko (2017), Kociecki and Kolasa (2018), *Kocięcki and Kolasa (2023)*

<ロト < (回) < (u) < (

Contribution

Setup 00000000 Theory 000000000 Application 00000000000

Literature and Contributions

- Frequentist inference for set-identified models: Horowitz and Manski (2000), Manski (2003), Imbens and Manski (2004), Chernozhukov, Hong, and Tamer (2007), Stoye (2009), Romano and Shaikh (2010), Kaido, Molinari, and Stoye (2019)
- Bayesian inference for set-identified models: Baumeister and Hamilton (2015), Kline and Tamer (2016), Chen, Christensen, and Tamer (2018)

• My contribution:

- A new Bayesian algorithm that can be applied to general structural models for estimation and inference.
- I work on "global" identification rather than identification at certain point (KK23).
- Method applied to DSGE models, whereas GK21's method only applicable to SVAR.

Contribution

Setup 00000000 Theory 000000000 Application 00000000000

Estimate a Linearized DSGE model

Standard precedure

- S 1. Summarize a macro model with equilibrium conditions, measurement equations, etc.
- S 2. Log-linearization the equations around steady state, represent the model by a *linear rational expectation model* (LRM) with deep parameters θ .

$$\Gamma_{0}(\theta) \begin{bmatrix} S_{t} \\ P_{t} \end{bmatrix} = \Gamma_{1}(\theta)\mathbb{E}_{t} \begin{bmatrix} S_{t+1} \\ P_{t+1} \end{bmatrix} + \Gamma_{2}(\theta)S_{t-1} + \Gamma_{3}(\theta)\varepsilon_{t}$$

 S_t state variables, P_t policy variables.

Contribution

Setup 00000000 Theory 000000000 Application 00000000000

Estimate a Linearized DSGE model

Standard precedure

S 3. Solve the LREM, combine with measurement equations and attain a *state-space representation*.

$$S_{t} = A(\theta)S_{t-1} + B(\theta)\varepsilon_{t}$$
$$Y_{t} = C(\theta)S_{t-1} + D(\theta)\varepsilon_{t}$$

- S 4. Use a generic filter to compute the likelihood $p(y \mid \theta)$ through the state-space model.
- S 5. Start from a prior distribution π_{θ} , update by MCMC methods using the likelihood and obtain the posterior distribution of θ , $\pi_{\theta|y}$.

Setup

Assumption (1)

Linearized DSGE model with Gaussian shocks.

Linear State-space representation

Assumption (2)

Solution to the LREM is unique, i.e. no indeterminacy.

• Coefficient of SS uniquely determined by solution.

Assumption (3)

Deep parameters enter LREM in an algebraic expression way.

• e.g. NKPC in Gali (2015):
$$\pi_t = \beta E_t \{\pi_{t+1}\} + \lambda \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha}\right) \tilde{y}_t$$

Setup 0000000 Theory 000000000 Application 00000000000

Definitions

Definition (OE)

Parameter $\bar{\theta}$ is observationally equivalent to θ if they yield the same data generating process.

A property independent of data

Definition (Identification)

 θ is identified if it has no observationally equivalent parameters.

Define the equivalence mapping K : Θ → 2^Θ, that is, p(y | θ) = p(y | θ̄) for all y, if and only if K(θ) = K(θ̄).

- S.1 Run standard Bayesian estimation, get posterior draws of θ from a given prior π_{θ} .
- *S.2** Optimize over the observationally equivalent set of parameters of this draw, find the lower and upper bounds of parameters of interest.
 - Finding the OE set of a given parameter involves solving a polynomial system.
 - S.3 Average the lower/upper bounds for means and quantiles.

lotivation	
0000000	

Contributio

Setup 00000000 Theory 000000000 Application 00000000000

OE characterization

Assumptions

Define $N = APC' + B\Sigma D'$, where $P = E(S_t S'_t)$,

Assumption (Stability)

For every $\theta \in \Theta$ and for any $z \in \mathbb{C}$, $det(zI_{n_s} - A) = 0$ implies |z| < 1.

Assumption (Stochastic Minimality)

For every $\theta \in \Theta$, matrices \mathcal{O} have full column rank and \mathcal{C} have full row rank, i.e. rank(\mathcal{O}) = rank(\mathcal{C}) = n_S . Where $\mathcal{O} \equiv (C' \quad A'C' \quad \cdots \quad A'^{n_S-1}C')$, $\mathcal{C} \equiv (N \quad AN \quad \cdots \quad A^{n_S-1}N)$.

Contributio

Setup 00000000 Theory 000000000 Application 00000000000

OE characterization

Theorem (KK23)

Let stability and stochastic minimality assumptions hold. Then $\theta \sim \bar{\theta}$ if and only if

1) $\bar{A} = TAT^{-1}$, 2) $\bar{C} = CT^{-1}$, 3) $AQA' - Q = T^{-1}\bar{B}\bar{\Sigma}\bar{B}'T'^{-1} - B\Sigma\bar{B}'$, 4) $CQC' = \bar{D}\bar{\Sigma}\bar{D}' - D\Sigma\bar{D}'$, 5) $AQC' = T^{-1}\bar{B}\bar{\Sigma}\bar{D}' - B\Sigma\bar{D}'$,

for some nonsingular $n_{\varepsilon} \times n_{\varepsilon}$ matrix T and symmetric $n_{\varepsilon} \times n_{\varepsilon}$ matrix Q. In addition, if $\theta \sim \overline{\theta}$ then both T and Q are unique.

Motivation	Contribution	Setup	Theory	Application				
00000000	00000	⊙⊙⊙⊙⊙●⊙⊙	00000000	00000000000				
OF characterization								

- In order to use KK23, given a parameter θ
 , we need to link it to the solutions.
- Attain the solution, S_t = Ā(θ)S_{t-1} + B(θ)ε_t and P_t = F(θ)S_{t-1} + G(θ)ε_t, plug in LRM, equate coefficients on both sides in terms of S_{t-1}, and ε_t.

$$\overline{\Gamma}_0^s \overline{A} + \overline{\Gamma}_0^\rho \overline{F} - \overline{\Gamma}_1^s (\overline{A})^2 - \overline{\Gamma}_1^\rho \overline{F} \overline{A} = \overline{\Gamma}_2$$

$$\overline{\Gamma}_1^s \overline{A} \overline{B} + \overline{\Gamma}_1^\rho \overline{F} \overline{B} - \overline{\Gamma}_0^s \overline{B} + \overline{\Gamma}_3 = \overline{\Gamma}_0^\rho \overline{G}$$

(日) (四) (三) (三) (三)

19/41

Motivation	Contribution	Setup	Theory	Application
0000000		○○○○○○●○	00000000	00000000000

OE characterization

Brief

Therefore, we can solve for observationally equivalent $\bar{\theta}$ following the procedure

- S.1 Given θ , solve for state-space coefficients.
- S.2 Characterize $\bar{\theta}$ by KK23 and the previous equations, unknowns include (not limit to) $\bar{\theta}$, \bar{B} , \bar{G} .
- S.3 Reduce a polynomial system to its reduced Grobner basis.

Contributio

Setup 0000000 Theory 000000000 Application 00000000000

Gröbner Basis

A reduced Gröbner basis is a set of *multivariate polynomials* enjoying certain properties that allow simple algorithmic solutions. For example, the equations:

$$x^3 - 2xy$$
, $x^2 - 2y^2 + x$.

has a reduced Gröbner basis

$$x^2$$
, xy , $y^2 - \frac{x}{2}$

- Any zero of a Gröbner basis is also a zero of the original system.
- Reduced Gröbner bases are unique for any given set of polynomials and any monomial ordering.

Contributio

Setup 00000000 Theory •00000000 Application 00000000000

Additional Assumptions

Assumption (Measurability)

The equivalence mapping K is Effros measurable, that is,

 $K^{-}(F) \equiv \{\theta : K(\theta) \cap F \neq \emptyset\} \in \mathcal{A} \text{ for each } F \in \mathcal{F}.$

Assumption (Continuity)

- (1) *K* is a continuous correspondence at θ_0 .
- (2) Parameters of interest $\eta : \Theta \to \eta(\Theta)$ is continuous.

Assumption (Regularity)

Let the prior of deep parameters θ , π_{θ} , be absolutely continuous with respect to a σ -finite measure on (Θ, A) , and $\pi_{\theta}(\Theta) = 1$.

Multiple priors

 Define the class of all priors that the marginal distribution for *K* coincides with the given π_K, i.e.,

$$\Pi_{\theta}(\pi_{\mathcal{K}}) = \{\pi_{\theta} : \pi_{\theta} \left(\{\theta : \mathcal{K}(\theta) \in B\} \right) = \pi_{\mathcal{K}}(B), \text{ for } B \in \mathcal{B}(\mathcal{F}) \}$$

- * The class of priors induce the same prior predictive distribution $p(y) = \int p(y \mid \theta) d\pi_{\theta}.$
- * The class of priors have the same push-forward measure π_K .

Contributio

Setup 00000000 Theory 000000000 Application 00000000000

Robust Distributions

Theorem (Posterior Mean)

For a given π_{θ} , let measurability and regularity assumptions hold, that is, given a prior π_{θ} absolutely continuous with respect to a σ -finite measure, we have a push-forward measure π_{K} of π_{θ} under K that is also absolutely continuous. Define

$$\overline{\eta}^{*}(\theta) = \sup_{\theta' \in \mathcal{K}(\theta)} \eta(\theta'), \quad \underline{\eta}^{*}(\theta) = \inf_{\theta' \in \mathcal{K}(\theta)} \eta(\theta')$$

Then, the set of posterior means is characterized by

$$\sup_{\pi_{\theta|Y}\in \Pi_{\theta|Y}} \mathbb{E}_{\theta|Y}\left[\eta(\theta)\right] = \mathbb{E}_{\theta|Y}\left[\overline{\eta}^{*}(\theta)\right], \quad \inf_{\pi_{\theta|Y}\in \Pi_{\theta|Y}} \mathbb{E}_{\theta|Y}\left[\eta(\theta)\right] = \mathbb{E}_{\theta|Y}\left[\underline{\eta}^{*}(\theta)\right]$$

where $\Pi_{\theta|Y}$ collects the posteriors of $\Pi_{\theta}(\pi_K)$ for a given π_K .

Contributio

Setup 00000000 Theory 000000000 Application 00000000000

Robust Distributions

Definitions for the proof

In random set theory (Molchanov and Molinari (2018)),

Definition (Selection)

Let $X : \Phi \rightrightarrows \mathcal{H}$ be a closed random set defined on the probability space $(\Phi, \mathcal{B}, \pi_{\phi|Y})$, and $\xi(\phi) : \Phi \rightarrow \mathcal{H}$ be its measurable selection, i.e., $\xi(\phi) \in X(\phi), \pi_{\phi|Y}$ -a.s. Let $S^{1}(X)$ be the class of integrable measurable selections, $S^{1}(X) = \{\xi : \xi(\phi) \in X(\phi), \pi_{\phi|Y}$ -a.s., $E_{\phi|Y}(||\xi||) < \infty\}$.

Definition (Aumann expectation)

The Aumann expectation of X is defined as $E_{\phi|Y}^{A}(X) \equiv \{E_{\phi|Y}(\xi) : \xi \in S^{1}(X)\}$

Robust Distributions

Proof

- First show that $\sup_{\pi_{\theta|Y} \in \Pi_{\theta|Y}} \mathbb{E}_{\theta|Y} [\eta(\theta)] = \mathbb{E}_{K|Y} \left[\sup_{\{\theta \in \Theta: \theta \in K\}} \eta(\theta) \right]$
- Note that

$$\left\{\mathbb{E}_{\theta|K}\left[\eta(\theta)\right]:\pi_{\theta|K}(K(\theta))=1\right\}=co\left(\left\{\eta(\theta),\theta\in K\right\}
ight)$$

- A selection $\pi_{\theta|K}$ can be viewed as a selection from $co(\{\eta(\theta), \theta \in K\})$.
- The set $\{E_{\theta|Y}(\eta(\theta)) = E_{K|Y}[E_{\theta|K}(\eta(\theta))] : \pi_{\theta|K} \in \Pi_{\theta|K}\}$ agrees with $E_{K|Y}^{A}[co(\{\eta(\theta), \theta \in K\})]$ by the definition of the Aumann integral.
- Let the selection be $\sup_{\{\theta \in \Theta: \theta \in K\}} \eta(\theta)$ then its done.

VI	ot	iv	at	io	n			
С	0	0	0	0	0	0	0	

Contribution

Setup 00000000 Theory 0000000000 Application 00000000000

Robust Distributions

Proof

- Then, show that $\mathbb{E}_{K|Y}\left[\sup_{\{\theta \in \Theta: \theta \in K\}} \eta(\theta)\right] = \mathbb{E}_{\theta|Y}\left[\overline{\eta}^*(\theta)\right]$
- · Write out the expectation to integration, we have LHS equals

$$\int_{2^{\Theta}} \sup_{\{\theta \in \Theta: \theta \in K\}} \eta(\theta) \mathrm{d}\pi_{K|Y} = \int_{\Theta} \sup_{\{\theta' \in \Theta: \theta' \in K(\theta)\}} \eta(\theta') \mathrm{d}\pi_{\theta|Y},$$

where the second equality follows from a change of variable.

RHS is

$$\mathbb{E}_{ heta|Y}\left[ar\eta^*(heta)
ight] = \int_{\Theta}ar\eta^*(heta)\mathrm{d}\pi_{ heta|Y},$$

which equals to LHS because by definition,

$$\overline{\eta}^*(heta) = \sup_{ heta' \in \mathcal{K}(heta)} \eta(heta')$$

<ロト<型ト<注ト<注入

マスペ

27/41

Contributio

Setup 00000000 Theory 0000000000 Application 00000000000

Robust Distributions

Theorem (Consistency)

Let, in addition continuity assumption hold, assume further that induced prior π_K leads to a consistent posterior, and $\Theta \subset \mathbb{R}^p$, $H \subset \mathbb{R}^q$ for some $p, q < \infty$ are compact spaces. Then the Hausdorff distance between the set of posterior means and the convex hull of true identified set goes to zero almost surely as T increases, i.e.,

$$\lim_{T\to\infty} d_{H}\left(E_{\theta\mid Y^{T}}\left[\left(\underline{\eta}^{*}(\theta), \overline{\eta}^{*}(\theta)\right)\right], \left(\underline{\eta}^{*}(\theta_{0}), \overline{\eta}^{*}(\theta_{0})\right)\right) \to 0, \quad p(Y^{\infty}\mid \theta_{0}) \text{ -a.s.}$$

Motivation	Contribution	Setup	Theory	Application
00000000	00000	00000000	00000000	00000000000
0000000	00000	0000000	000000000	00000000000

Inferenece

Assumption (Convergence)

(i) Let $\hat{\theta}$ denote an element of the set of maximum likelihood estimators,

$$\sqrt{T} \begin{pmatrix} \underline{\eta}^{*}(\theta) - \underline{\eta}^{*}(\hat{\theta}) \\ \overline{\eta}^{*}(\theta) - \overline{\eta}^{*}(\hat{\theta}) \end{pmatrix} | Y^{T} \Rightarrow \mathcal{N}(0, \Sigma), \text{ as } T \to \infty, p(Y^{\infty} | \theta_{0}) \text{-a.s.1})$$

$$\sqrt{T} \begin{pmatrix} \underline{\eta}^{*}(\hat{\theta}) - \underline{\eta}^{*}(\theta_{0}) \\ \overline{\eta}^{*}(\hat{\theta}) - \overline{\eta}^{*}(\theta_{0}) \end{pmatrix} | \theta_{0} \Rightarrow \mathcal{N}(0, \Sigma), \text{ as } T \to \infty.$$
(2)

(ii) For the robust credible region $\left[\underline{q}_{\alpha/2}^*, \overline{q}_{1-\alpha/2}^*\right]$,

$$\hat{c}_{T} \equiv \sqrt{T} \begin{pmatrix} \underline{q}_{\alpha/2}^{*} - \underline{\eta}^{*}(\hat{\theta}) \\ \overline{q}_{1-\alpha/2}^{*} - \overline{\eta}^{*}(\hat{\theta}) \end{pmatrix} \xrightarrow{p} c$$
(3)

for some constant c as $T \to \infty$.

Inference

Theorem (Coverage)

Under some regularity assumptions and Assumption Convergence,

$$\lim \inf_{T \to \infty} P_{Y^{T} \mid \theta_{0}} \left(\eta(\mathcal{K}(\theta_{0})) \subset \left[\underline{q}^{*}_{\alpha/2}, \overline{q}^{*}_{1-\alpha/2}\right] \right) \geq 1 - \alpha.$$
(4)

Contribution

Setup 00000000 Theory 000000000 Application •0000000000

Example 1: Cochrane Model

Consider the full model

$$\begin{aligned} x_t &= \rho x_{t-1} + \epsilon_t, \quad |\rho| < 1, \epsilon_t \sim N(0, \sigma_\epsilon) \\ i_t &= r + E_t \pi_{t+1} \\ i_t &= r + \psi \pi_t + x_t, \quad \psi > 1 \end{aligned}$$

Structural parameters are $\theta = (\rho, \psi, \sigma_{\epsilon})$. The solution is equivalent to a AR(1) setting

$$\pi_t = \rho \pi_{t-1} + \frac{1}{\psi - \rho} \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_\epsilon^2)$$

with $\phi = (\rho, \frac{\sigma_{\epsilon}}{\psi - \rho})$

<ロト<部ト<重ト<重ト 31/41

Motivation	Contribution	Setup	Theory
0000000	00000	0000000	0000000

Table: Estimated Identified Set

	True value	Identified set	Range of posterior mean
σ_{e}	1	$(0.2,\infty)$	$(0.21,\infty)$
ϕ_{π}	1.8	$(1,\infty)$	$(1.00,\infty)$
ρ	0.8	0.8	0.80

 Estimation of range of posterior means approximates the identified set well.

Application

Motivation	Contribution	Setup	Theory	Application
0000000	00000	0000000	00000000	000000000000000000000000000000000000000

8

10 12 14

-6

-8 L 0

2

4 6

True IR₁ Identified set of IR

16 18 20

Motivation	Contribution	Setup	Theory	Application
0000000	00000	0000000	00000000	000000000000000000000000000000000000000

<ロ><部</p>
<日><部</p>
<日><日><日><日><日><10</p>
<10</p>
<

Motivation	Contribution	Setup	Theory	Application
0000000	00000	0000000	00000000	000000000000

イロト イロト イヨト イヨト 二日 35/41

Contribution

Setup 00000000 Theory 000000000 Application

Example 2: Three-equation New Keynesian

Consider the following model,

$$y_{t} = \mathbb{E}_{t} y_{t+1} - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} \pi_{t+1}) + \varepsilon_{yt}$$
$$\pi_{t} = \beta \mathbb{E}_{t} \pi_{t+1} + \kappa y_{t} + \varepsilon_{\pi t}$$
$$i_{t} = \rho i_{t-1} + (1 - \rho) (\phi_{\pi} \pi_{t} + \phi_{y} y_{t}) + \varepsilon_{Rt}$$
$$\varepsilon_{jt} \sim N(0, 1); \quad j = y, \pi, R$$

where π_t inflation, y_t the output gap, i_t the nominal interest rate.

 $\kappa = \frac{(1-\tau)(1-\beta\tau)}{\tau}(\sigma+\psi)$ is the slope of the Philips curve. Since (ψ, τ) only enter the equation system via κ , ψ can be jointly unidentified with τ . The identification problem here is purely mathematical and is almost trivial.

M	ot	iv	at	io	n		
0	0	0	0	0	0	0	0

Contribution

Setup 000000000 Theory 000000000 Application

Example 2: An and Shorfheide (2007)

$$y_{t} = \mathbb{E}_{t} [y_{t+1}] - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} [\pi_{t+1}] + \mathbb{E}_{t} [z_{t+1}]) + g_{t} - \mathbb{E}_{t} [g_{t+1}]$$
$$\pi_{t} = \beta \mathbb{E}_{t} [\pi_{t+1}] + \kappa (y_{t} - g_{t})$$
$$i_{t} = \rho_{R} i_{t-1} + (1 - \rho_{R}) \psi_{\pi} \pi_{t} + (1 - \rho_{R}) \psi_{y} (y_{t} - g_{t}) + \varepsilon_{R,t}$$
$$z_{t} = \rho_{z} z_{t-1} + \varepsilon_{z,t}, \quad g_{t} = \rho_{g} g_{t-1} + \varepsilon_{g,t}.$$

• $(\psi_{\pi}, \psi_{y}, \rho_{R}, \sigma_{R})$ are not identified.

 All the shocks, either has no effect on π_t or y_t, or affect π_t and y_t in the same direction.

Contribution

Setup 00000000 Theory 000000000 Application

Example 2: A Cost-push Shock Model

To generate meaningful trade-off between output gap and inflation,

$$y_{t} = \mathbb{E}_{t} [y_{t+1}] - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} [\pi_{t+1}]) + g_{t} - \mathbb{E}_{t} [g_{t+1}]$$
$$\pi_{t} = \beta \mathbb{E}_{t} [\pi_{t+1}] + \kappa (y_{t} - g_{t}) + u_{t}$$
$$i_{t} = \rho_{B} i_{t-1} + (1 - \rho_{B}) \psi_{\pi} \pi_{t} + (1 - \rho_{B}) \psi_{y} (y_{t} - g_{t}) + \varepsilon_{B,t}$$
$$u_{t} = \rho_{u} u_{t-1} + \varepsilon_{u,t}, \quad g_{t} = \rho_{g} g_{t-1} + \varepsilon_{g,t}.$$

- Positive cost-push shock $u \longrightarrow y \downarrow, \pi \uparrow$
- Positive monetary policy shock $\epsilon_R \longrightarrow y \downarrow, \pi \downarrow$

Μ	ot	iv	at	io	n		
0	0	0	0	0	0	0	0

Contributio

Setup 00000000 Theory 000000000 Application

Example 2: Policy

Table: Policy Comparison under Different Distributions and Weights

	$\frac{1}{\nu\kappa}$	$=1$ $\frac{1}{\nu\kappa}=3$		$\frac{1}{\nu\kappa} = 1$ $\frac{1}{\nu\kappa} = 3$ $\frac{1}{\nu\kappa} =$		= 10
(ψ_{π},ψ_{y})	post 1	post 2	post 1	post 2	post 1	post 2
(1.5, 0)			\checkmark		\checkmark	\checkmark
(1.5, 0.125)	\checkmark	\checkmark		\checkmark		
(1.5, 1)	\checkmark	<i>√</i>				
(5, 0)			\checkmark	\checkmark	\checkmark	\checkmark

Contribution

Setup 00000000 Theory 000000000 Application

Smets and Wouters 2007

	True value	Posterior mean	(Robust) Bayesian CR
$\overline{\alpha_1 = \frac{(\gamma - 1 + \delta)\alpha}{\beta^{-1}\gamma^{\sigma_c} - 1 + \delta}}$	0.17	0.17	[0.16,0.18]
$\alpha_2 = \frac{\lambda \gamma^{-1}}{1 + \lambda \gamma^{-1}}$	0.41	0.41	[0.41,0.42]
$\alpha_3 = \frac{(1-\alpha)(\sigma_c-1)}{\phi_w \sigma_c (1+\lambda \gamma^{-1})(1-\alpha_1-g_y)}$	0.13	0.13	[0.12,0.14]
$\alpha_4 = \frac{1 - \lambda \gamma^{-1}}{(1 + \lambda \gamma^{-1})\sigma_c}$	0.12	0.13	[0.13,0.13]
$\alpha_5 = \frac{1}{1 + \beta \gamma^{1 - \sigma_c}}$	0.50	0.50	[0.50,0.50]
$\alpha_6 = \frac{1}{(1+\beta\gamma^{1-\sigma_c})\varphi\gamma^2}$	0.09	0.09	[0.08,0.10]
$\alpha_7 = \beta \gamma^{-\sigma_c} (1 - \delta)$	0.97	0.97	[0.97,0.97]
$\alpha_8 = (1 - \delta)\gamma^{-1}$	0.97	0.97	[0.97,0.97]
$\alpha_{9} = (1 - \alpha_{8})(1 + \beta \gamma^{1 - \sigma_{c}})\varphi \gamma^{2}$	0.29	0.31	[0.28,0.34]
$\alpha_{10} = \frac{\iota_p}{1 + \beta \gamma^{1 - \sigma_c} \iota_p}$	0.19	0.16	[0.14,0.19]
$\alpha_{11} = \frac{\beta \gamma^{1 - \sigma_c}}{1 + \beta \gamma^{1 - \sigma_c} \iota_p}$	0.80	0.83	[0.81,0.86]
$\alpha_{12} = \frac{(1-\beta\gamma^{1-\sigma_c}\xi_p)(1-\xi_p)}{(1+\beta\gamma^{1-\sigma_c}\iota_p)\xi_p[(\phi_p-1)\varepsilon_p+1]}$	0.02	0.02	[0.02,0.02]
$\alpha_{13} = \frac{1}{1 - \lambda \gamma^{-1}}$	3.41	3.37	[3.29,3.44]
$\alpha_{14} = \frac{\iota_{W}}{1 + \beta \gamma^{1 - \sigma_{c}}}$	0.29	0.29	[0.27,0.31]
$\alpha_{15} = \frac{1 + \beta \gamma^{1 - \sigma_{c_{LW}}}}{1 + \beta \gamma^{1 - \delta_{c}}}$	0.79	0.79	[0.77,0.81]
$\alpha_{16} = \frac{(1-\beta\gamma^{1-\sigma_c}\xi_w)(1-\xi_w)}{(1+\beta\gamma^{1-\sigma_c})\xi_w[(\phi_w-1)\varepsilon_w+1]}$	0.00	0.01	[0.01,0.01]

Same setup as kk23. Same identification results, but "globally".

э

Motivation	
00000000	

Contribution

Setup 00000000 Theory 000000000 Application

Conclusion

In this paper, I address the following issues:

- Estimation of highly structural set-identified models can be challenging. medskip
 - * An Bayesian algorithm that is generally applicable is proposed.
- Estimation results of set-identified DSGE models are sensitive to choice of priors (Identification)
 - * Use a robust Bayesian algorithm, I can pick any 'reasonable' prior and obtain robust results.
 - * I also prove it asymptotically finds the frequentist identified set.
- Researchers are silent about non-identified DSGE models (Policy-implication)
 - * The collection of posterior means of parameters of interest is given.
 - One may still have nontrivial conclusions even when the model suffers identification problems.