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Motivation: Task Assignment in Pandemic

m During the spread of COVID-19, designing, imposing and lifting mitigation
policy has been the center of discussion.
m Two important observations:

m Mitigation policies have geographical externalities.

m Mitigation policies are issued either by subnational government (China, US
etc.) or central government (Germany, Singapore etc.)

m Question: Should mitigation policy be a Centralized or Decentralized

decision?
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Motivation: Task Assignment in Pandemic

m Task assignment of government (Oates, 1972):

m Centralization internalizes externalities while decentralization respects
heterogeneity.

m We revisit this famous intuition by analyzing the task assignment problem
of government in pandemics.

m What's new conceptually?

m Fighting with pandemic is a dynamic task, i.e. focusing on the timing of
mitigation policy.

m We introduce new channels that may mediate the classical intuition.
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This Paper

m We write down a dynamic game model of regional government’s decision
on mitigation policy.

m Regional authorities trade off between cost of economy, value of lives and
political concerns based on regional characteristics.

m But they did not taking into consideration of the externalities.

m 2 important factors that could affect their decision:

m Regional differences in value system, e.g. political attitude, electoral
concerns etc. (Barrios and Hochberg 2020., Allcott et al. 2020.)

m Differences of regional economic indicators, e.g. unemployment and
consumer expenditure, etc.
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This Paper (CONT’)

m We estimate the models using the observed lock-down timing and
cases/deaths data of COVID-19, social-distancing metrics and Macro data
in the US.

m Step 1: Estimate a structural SIR model with regional spillover.
m Step 2: Estimate a dynamic game model to find decision-related parameters.
m The policy experiments that we are interested in are:

m Optimal timing of lock-down and reopening decision made by encompassing
externalities.

m Is it better for federal government to design the timing of mitigation policy?
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Related Literature

Our paper is closely related to literature on COVID-19, public good and
externalities, and dynamic game.
m Literature on epidemics, pandemics and COVID-19:
m Structural estimation of SIR model. (Atkeson et al. 2020;
Ferndndez-Villaverde and Jones 2020; Berger et al 2020; Eichenbaum et al
2020; Piguillem and shi 2020)
We extended classic SIR model with spillover effects.

m Strategies/effectiveness of lock-down/mitigation policies. (Acemoglu et al.
2020 Alvarez et al.2020; Fang et al. 2020; Jones et al 2020)
We estimate a dynamic game between local governments.
We also construct counterfactuals based on estimation results to reveal the
effectiveness of mitigation policies.

m Estimation of epidemiological parameters. (Manski and Molinari 2020)
We make use of these bounds in our structural SIR simulation.
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Related Literature

m The classical literature of public good and its externalities:

m Task assignment of government (Oates et al. 1972; Banzhaf and Chupp.
2012; Kuwayama and Brozovié¢. 2013; Knight. 2013)
Our model makes it possible for us to evaluate the welfare implication of
various counterfactual task assignments.

m The estimation method we adopt is from the literature of empirical

estimation of dynamic game. (Aguirregabiria and Mira. 2007; Bajari,
Benkard, Levin. 2007; Pakes et al 2007; Sweeting 2012; Ryan 2012)
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Data

m Footage data:
m PlacelQ: We use this well-constructed LEX index as an alternative to test
robustness
m Safegraph: Daily phone tracking data accurate to the nearest census block
group
Epidemiological data:
m We use the tested, confirmed and death data from The COVID Tracking
Project.
m Economic Indicators:

m The economic indicators that we use are from The Opportunity Insights
Economic Tracker program

m Government Interventions:
m We collect the dates on interventions via online announcements
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Empirical Evidence 1: Inter-state Exposure

Exposure across States on date 2020-03-02
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Empirical Evidence 1: Inter-state Exposure

Exposure across States on date 2020-03-30
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Empirical Evidence 2: Social Distancing

March 2 2020 Completely at Home Ratio
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e Data from SafeGraph: This ratio is measured by the share of mobile devices
which did not leave home.
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Empirical Evidence 2:

Social Distancing

March 30 2020 Completely at Home Ratio
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Empirical Evidence 3: Intervention timeline

Stay-at-home Intervention dates
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Empirical Evidence 3: Event Study

m To show the effect of state government’s mitigation policy, we plot %
change of activity around the time of different mitigation policies.

m The outcome variables are change of stay-at-home ratio & inter-state
activity.

m We control for confirmed cases to capture voluntary activity reduction.

m Other controls include state fixed effect, the effect of each day of a week
and holidays.

m We also conduct a falsification test to show that state m's mitigation
policy does not affect the movement from state m’ to m.
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Empirical Evidence 3: Event study
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m Left: First state intervention.

m Right: Stay-at-home order
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Empirical Evidence 3: Event study

Safegraph of the Most Inter - connected State Safegraph of the Most Inter - connected State
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m Left: First state intervention.3

m Right: Stay-at-home order

16 /42



Empirical Evidence 3: Event study
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m Falsification test.
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Model Setup: Basics

m Time is discrete. Everyone in the economy discounts future by the same §.

m There are M heterogeneous regions, m € {1,2,3,...M}.

m At each point of time t, each region has a population of n{". n; = ZC/’ ny.
The initial population is n™ and n respectively

m Vt, each individual in each m can be one of the 4 types:

m Susceptible s[7, infected i[", dead d[" or recovered r]".
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Model Setup: COVID-19 related States

m Susceptible (s{"): individuals that have not been exposed to the virus.
m Infected (i{"): individuals that are infected and are infectious.

m Recovered (r{"): infected individuals that have recovered have immunity
thereafter.

m Dead (d{"): individuals that die of the disease at t.

m In each period, we have the following equality holds in each region:
1=s"4+i"4+r"+d".
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Model Setup: Action Space

m Government can impose mitigation policies on the regional economy.

m We assume that the lock-down decision is a discrete decision that has a
total L 4+ 1 possible actions, i.e. /" € {0, h, b, ...IL}.

m As shown in the previous reduced form analysis, we focus on the timing of
2 policies interventions: first policy issued and stay at home order.

m Currently, we focus on a set of closely connected states NY, NJ, CT, PA,
DE, Rl and MA.
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COVID-19 State Transitions: Law of Motion

m We consider a simple SIR structure with regional spillover effect.

m m m m m sm
Aslly = =Amm(I")B" (I Z A, mr (1 (I )it ﬁ
m’'#m t
sm
Aifty = Amm(I)B" () 1 d,,, i+ 3 A ()B™ (17 )i _7(#,, =i’
m’'#m

Ay = (1—v)yif
Ad = vyi”
m where \; ,, is the inter-regional connection, 8™ is the infection rate and
v, v are standard COVID-19 related parameters.

m To solve the model using full-information we need to solve for a 4-variable
diffusion process, which needs extra work than Ait-Sahalia (2002, 2008),
and is beyond this paper.
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COVID-19 State Transitions: Indirected Inference

m We consider the following regime-switching model with Weilbull function
as our auxiliary model and conduct indirect inference for each m.

b—1 b
Ade = d® <7t_t°_c) exp [— <7t_t°_c>
a a a

ke here is the regime at time t, ¢; are i.i.d. and canonical Gaussian. oy, is
regime specific variances.

+ Ok €t

m To further use information other than d;, we also impose bounds on model
implied infected population at each period t from Manski and Molinari
(2020) when conducting estimation.
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Estimation Details

m Choice of parameters:

® {\y . (I™)} is calibrated from Safegraph data.

m  is the daily rate at which agents who are infected stop being infectious.
We use the median incubation period 5 from literature, that is, v = 1/5.

m We denote the infection-fatality rate from the disease by v. We consider
values of v= 1% as our baseline value and 1.4% as an alternative value.

m Bound for sensitivity is 0.6 and 0.9, specificity is set to be 1.

m Via indirect inference, we got estimates for 3™ (/), Ym, which can be used
for simulating counter-factual disease propagation.
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Simulation results 1
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m Day 1 is March 12th.

m Red line is the simulated daily death, blue line is the actual data from The
Covid-tracking Project.
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Simulation results 1
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Simulation results 2
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m Day 1 is March 14th.

m Blue line is the counterfactual death toll without any mitigation policy, red
line is the actual accumulated deaths.
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Economic State Variables

m We collect a set of economic related state variables (E; = {E},..}).
Specifically E[" = {b{", u{"} contains:

m b is the percentage change of small business revenue.

m u" is the change of unemployment rate.

m We assume that E; is affected by the COVID-19 situation, but not the
other way around.

m We parameterized the transition of E; estimation of the transition density
for E: given COVID-19 state variables and E;_j.

27 /42



Economic State Variables

m We assume that both b{" and u" is evolved according to the following
parameterized AR(1) transition density:

bt—pbt1+prt+Zpb1 k) + el

uf' = p uly + piZe+ Y p (1" = k) + e
k

where Z; consists of df", (df")?, Ad{" and (Ad{")?. e is ai.i.d. N(0,1)
error.

m In practice, all state variables are logged. We pool all regions together in
estimation.

m Putting together with our results on p(Ad;,d; | Ad:_1,d:_1,L;), we have
the transition density of all the state variables p(X¢|X¢—1, L:

m The structural of our SIR model makes it sufficient to carry 2 covid state
variables.
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Economic State Var Transition

) ®
Ump Revenue
LUmp 0.085%%%
(0.00248)
L.Revenue 0.965%**
(0.00817)
L.Daily Death 0.00117 -0.0300***
(0.00134) (0.00630)
L.Daily Death Square -0.000840*** 0.00212%**
(0.000139) (0.000733)
L.Cumulative Death -0.00182 0.0297***
(0.00136) (0.00638)
L.Cumulative Death Square 0.000452%** -0.00127***
(0.0000812) (0.000427)
Mitigation Policy=1 -0.00708*** -0.0654***
(0.00147) (0.00767)
Mitigation Policy=2 -0.0144%** -0.0774%**
(0.00211) (0.0121)
R-square 1 1
Observations 539 539

Table: Transition Density of Economics State Variables
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Dynamic Game: Per-period Payoffs

m The per-period payoff of regional government is described as below:
71—('-1*7 Xt7 §{n) - ﬂ—p(Etm7 dtm7 Cm7 Il(n) + 5{"
m where £" ~ N(0,1) is a choice specific i.i.d. random shock

L
TP(ED, A7 CT ) = 0LET + 04 () +Cm Y 0117 = I}
N—— N—— F

economic cost loss of lives

political cost

m f is a polynomial up to the 2nd order.

m There is a m specific cost of implementing policy, where (™ is the share of
voters in m that voted for Trump during the 2016 pesidential election.
(Allcott et al.2020)
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Dynamic Game: Equilibrium

m We focus on Markov Perfect Equilibrium, i.e. given a same state X;,£™,
player m make same choices over time.

m Follow the BBL, we assume the data observed are generated by a single
MPE profile L.

m Per-period payoff function (L, X, &™) satisfies the Monotone Choice

assumption. So we can estimate Pr(/{"|X;) given the distribution
knowledge of &/.
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Dynamic Game: CCP Estimation

m We estimate the policy function using the ordered-Probit model.

m The dependent variable is the observed policy choice for each day, which is
chosen from an ordered set {0, FSA, SAH}.

m Explanatory variables are (logged): ef”, u, Ad[", (Ad{")2, dr,
’ / ’
Zm’#m Ad™, (Zm’#m Ady” )2' Zm’#m di .

m Other regions’ state variables are grouped together when enter the policy
function of region m, following Ryan (2012).
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CCP Estimation

Mitigation Policy

Ump 36.12%*
(14.49)
Revenue -0.424
(1.974)
Daily Death 2.273
(2.230)
|_daily_death_2 0.273%**
(0.0737)
Cumulative Death -2.174
(2.192)
Sum Daily Death -17.07%**
(5.830)
Sum Daily Death Square 1.228%**
(0.353)
Sum Cumulative Death 8.601**
(3.710)
cutl
Constant -11.18**
(5.452)
cut2
Constant -0.196
(4.720)
R-square 0.915
Observations 546

Table: Estimation of CCP
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Dynamic Game: Value Function Approximation

m We approximate value function through forward simulation a la BBL.

m Let V(X;L;0) denote the value function of firm i at state X, where
Markov strategy L is used by all m.

-
V(X;L;0) =E | Y 87 (L(Xe, &), Xe, £73.6)) [Xo = X; 6
t=0

where T and (3 should be chosen s.t. value function after T periods is
sufficiently small, e.g. 5 =0.98 and T = 120.
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Dynamic Game: Value Function Approximation

m Then we could do the simulation of VF for 546 unique state realizations
observed in the data.

m A single simulated path of play can be obtained by the following:
1. Starting at state Xo = X, draw private shock £2" from N(0,1) for each m.
2. Pick an action /§" from any Markov strategy profile L(Xo,&o) (or any other
deviations of it) and the resulting profits m (L(Xo, &), Xo, £7"; 6)).
3. Draw a new state X; using the estimated transition density P.
4. Repeat above steps for T periods.
We averaging G different paths of play to obtain a estimate of V(X;L;6)
given any strategy profiles.

m Notice that we can use the linearity simplification because the way 6
enters into the profit function.
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Dynamic Game: Equilibrium and “BBL” Estimator

m The strategy prof/ile L is a MPE if and only if Ym, VX, and V alternative
Markov policies / ,

v (x;/’,L_m;e) <V (X;/,L_m; 6)

m Thus we can form the following estimator (“BBL" Estimator)
2
658t = argmin Z Z max{(V (X; /' L 0) —V(X; L pm; 0)) ,0}
0
X /

To obtain a reasonable estimator, we need to think carefully about the
potential deviation strategy /’.
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Dynamic Game: Moment Ineq Based Estimator

m Alternatively, we could construct a moment inequality based estimator
(‘M1 Estimator”), where the moment inequality is of the form

Sv (x; I L 9) — V(X I,L_m;0) <0
X

for an alternative strategy /’.

m According to Sweeting (2013), the estimates from above 2 estimators are
sensitive to the choice of alternative strategies.
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Dynamic Game: GMM Estimator

m We could also construct GMM estimator by the following steps:

1. When simulating a single path of play, approximate V (X;/,L_n; 6) for all
I =0,/,/? and then find the / that maximizes the object.

2. Simulate for G path and then calculate probability of chosing each choice 0
i and k based on the simulation results, denote it as vector /(X).

3. Find the 8 that minimizes the simulation based CCP and actual choice
vector /99t2(X) observed in data.

m More formally, the GMM estimator is

0 = argmin [ix) - /da*a(X)}’ (i) — 1#2()]
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Counter-factual 1: Optimal Timing

m Social planner seeks to minimize the present discounted loss described as
below:
min Za Z”mnP(E[",d[",Cm,l{")
n

Ime{0,h,..

m where

L
mP(ED, d ¢ ) = OLET + 04f (d) + ¢S Op1{I7 = 1}

[ ] é;, é’d and OA;', are estimates from the previous estimation step.

m We seek to solve this single player dynamic problem and find the CCP that
minimizes the PDV.
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Counter-factual 2: Federal Decision Making

m Federal government seeks to minimize the present discounted loss
described as below:

S8 [+ (7 dr )

min
Ime{0,h,...IL} P

m where

m m L
fopm m m A m A n m Aiq g m
W(Et1dr1gvlr):‘9;ZTEr +6227f(dt)+<20p1{lt :/i} (1)
m m i
[ ] é;, é’d and OA;', are estimates from the previous estimation step.

m ( is the share of voters in M regions that voted for Trump in 2016
presidential election.

m We seek to solve this single player dynamic problem and find the CCP that
minimizes the PDV.
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Working in progress

m We are now at the stage of estimating the transition density of
p(X | X,L)

m We have a closed form for transition of (i’,d’) conditional on (i, d, L)
m Need to (non)parametrically estimate p(E’ | E,i,d, L)

m Curse of dimensionality

m What rules should be used to determine number of grid when we discretize
the state variables?
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Feedback

m Please give us feedback on:

m Modeling choices
m Estimation strategies

m Literature

m Any other advice are appreciated!

m Thank you!
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