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Motivation: Task Assignment in Pandemic

During the spread of COVID-19, designing, imposing and lifting mitigation
policy has been the center of discussion.

Two important observations:

Mitigation policies have geographical externalities.

Mitigation policies are issued either by subnational government (China, US
etc.) or central government (Germany, Singapore etc.)

Question: Should mitigation policy be a Centralized or Decentralized
decision?
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Motivation: Task Assignment in Pandemic

Task assignment of government (Oates, 1972):

Centralization internalizes externalities while decentralization respects
heterogeneity.

We revisit this famous intuition by analyzing the task assignment problem
of government in pandemics.

What’s new conceptually?

Fighting with pandemic is a dynamic task, i.e. focusing on the timing of
mitigation policy.

We introduce new channels that may mediate the classical intuition.
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This Paper

We write down a dynamic game model of regional government’s decision
on mitigation policy.

Regional authorities trade off between cost of economy, value of lives and
political concerns based on regional characteristics.

But they did not taking into consideration of the externalities.

2 important factors that could affect their decision:

Regional differences in value system, e.g. political attitude, electoral
concerns etc. (Barrios and Hochberg 2020., Allcott et al. 2020.)

Differences of regional economic indicators, e.g. unemployment and
consumer expenditure, etc.
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This Paper (CONT’)

We estimate the models using the observed lock-down timing and
cases/deaths data of COVID-19, social-distancing metrics and Macro data
in the US.

Step 1: Estimate a structural SIR model with regional spillover.

Step 2: Estimate a dynamic game model to find decision-related parameters.

The policy experiments that we are interested in are:

Optimal timing of lock-down and reopening decision made by encompassing
externalities.

Is it better for federal government to design the timing of mitigation policy?
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Related Literature

Our paper is closely related to literature on COVID-19, public good and
externalities, and dynamic game.

Literature on epidemics, pandemics and COVID-19:
Structural estimation of SIR model. (Atkeson et al. 2020;
Fernández-Villaverde and Jones 2020; Berger et al 2020; Eichenbaum et al
2020; Piguillem and shi 2020)
We extended classic SIR model with spillover effects.

Strategies/effectiveness of lock-down/mitigation policies. (Acemoglu et al.
2020 Alvarez et al.2020; Fang et al. 2020; Jones et al 2020)
We estimate a dynamic game between local governments.
We also construct counterfactuals based on estimation results to reveal the
effectiveness of mitigation policies.

Estimation of epidemiological parameters. (Manski and Molinari 2020)
We make use of these bounds in our structural SIR simulation.
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Related Literature

The classical literature of public good and its externalities:
Task assignment of government (Oates et al. 1972; Banzhaf and Chupp.
2012; Kuwayama and Brozović. 2013; Knight. 2013)
Our model makes it possible for us to evaluate the welfare implication of
various counterfactual task assignments.

The estimation method we adopt is from the literature of empirical
estimation of dynamic game. (Aguirregabiria and Mira. 2007; Bajari,
Benkard, Levin. 2007; Pakes et al 2007; Sweeting 2012; Ryan 2012)
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Data

Footage data:
PlaceIQ: We use this well-constructed LEX index as an alternative to test
robustness
Safegraph: Daily phone tracking data accurate to the nearest census block
group

Epidemiological data:
We use the tested, confirmed and death data from The COVID Tracking
Project.

Economic Indicators:
The economic indicators that we use are from The Opportunity Insights
Economic Tracker program

Government Interventions:
We collect the dates on interventions via online announcements
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Empirical Evidence 1: Inter-state Exposure

MS MT NC ND NE NH NJ
NM NV NY OH OK OR PA
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MT
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Exposure across States on date 2020-03-02

Daily LEXij = #devices pinned in state i in the past 14 days among denominator
#devices pinned in state j today
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Empirical Evidence 1: Inter-state Exposure

MS MT NC ND NE NH NJ
NM NV NY OH OK OR PA

MS
MT
NC
ND
NE
NH
NJ

NM
NV
NY
OH
OK
OR
PA

Exposure across States on date 2020-03-30

10 / 42



Empirical Evidence 2: Social Distancing

0.55 - 0.6
0.5 - 0.55
0.45 - 0.5
0.4 - 0.45
0.35 - 0.4
0.3 - 0.35
0.25 - 0.3
0.2 - 0.25
< 0.2

March 2 2020 Completely at Home Ratio

• Data from SafeGraph: This ratio is measured by the share of mobile devices
which did not leave home.
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Empirical Evidence 2: Social Distancing
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Empirical Evidence 3: Intervention timeline
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Empirical Evidence 3: Event Study

To show the effect of state government’s mitigation policy, we plot %
change of activity around the time of different mitigation policies.

The outcome variables are change of stay-at-home ratio & inter-state
activity.

We control for confirmed cases to capture voluntary activity reduction.

Other controls include state fixed effect, the effect of each day of a week
and holidays.

We also conduct a falsification test to show that state m’s mitigation
policy does not affect the movement from state m′ to m.
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Empirical Evidence 3: Event study
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Empirical Evidence 3: Event study
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Empirical Evidence 3: Event study
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Model Setup: Basics

Time is discrete. Everyone in the economy discounts future by the same δ.

There are M heterogeneous regions, m ∈ {1, 2, 3, ...M}.

At each point of time t, each region has a population of nm
t . nt =

∑M
r nm

t .
The initial population is nm and n respectively

∀t, each individual in each m can be one of the 4 types:

Susceptible smt , infected imt , dead dm
t or recovered rmt .
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Model Setup: COVID-19 related States

Susceptible (smt ): individuals that have not been exposed to the virus.

Infected (imt ): individuals that are infected and are infectious.

Recovered (rmt ): infected individuals that have recovered have immunity
thereafter.

Dead (dm
t ): individuals that die of the disease at t.

In each period, we have the following equality holds in each region:
1 = smt + imt + rmt + dm

t .
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Model Setup: Action Space

Government can impose mitigation policies on the regional economy.

We assume that the lock-down decision is a discrete decision that has a
total L + 1 possible actions, i.e. lmt ∈ {0, l1, l2, ...lL}.

As shown in the previous reduced form analysis, we focus on the timing of
2 policies interventions: first policy issued and stay at home order.

Currently, we focus on a set of closely connected states NY, NJ, CT, PA,
DE, RI and MA.
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COVID-19 State Transitions: Law of Motion

We consider a simple SIR structure with regional spillover effect.

∆smt+1 = −λm,m(lmt )βm(lmt )
smt

1− dm
t

imt −
∑
m′ 6=m

λm,m′ (lm
′

t )βm′
(lm

′
t )im

′
t

smt
1− dm

t

∆imt+1 = λm,m(lmt )βm(lmt )
smt

1− dm
t

imt +
∑
m′ 6=m

λm,m′ (lm
′

t )βm′
(lm

′
t )im

′
t

smt
1− dm

t

− γimt

∆rmt+1 = (1− ν)γimt
∆dm

t+1 = νγimt

where λi,m is the inter-regional connection, βm is the infection rate and
γ, ν are standard COVID-19 related parameters.

To solve the model using full-information we need to solve for a 4-variable
diffusion process, which needs extra work than Ait-Sahalia (2002, 2008),
and is beyond this paper.
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COVID-19 State Transitions: Indirected Inference

We consider the following regime-switching model with Weilbull function
as our auxiliary model and conduct indirect inference for each m.

∆dt = d
b

a

(
t − t0 − c

a

)b−1

exp

[
−
(
t − t0 − c

a

)b
]

+ σkt εt

kt here is the regime at time t, εt are i.i.d. and canonical Gaussian. σkt is
regime specific variances.

To further use information other than dt , we also impose bounds on model
implied infected population at each period t from Manski and Molinari
(2020) when conducting estimation.
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Estimation Details

Choice of parameters:
{λm,m′ (lm)} is calibrated from Safegraph data.
γ is the daily rate at which agents who are infected stop being infectious.
We use the median incubation period 5 from literature, that is, γ = 1/5.
We denote the infection-fatality rate from the disease by ν. We consider
values of ν= 1% as our baseline value and 1.4% as an alternative value.
Bound for sensitivity is 0.6 and 0.9, specificity is set to be 1.

Via indirect inference, we got estimates for βm(l), ∀m, which can be used
for simulating counter-factual disease propagation.
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Simulation results 1

Day 1 is March 12th.

Red line is the simulated daily death, blue line is the actual data from The
Covid-tracking Project.
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Simulation results 1

Day 1 is March 12th.

Red line is the simulated daily death, blue line is the actual data from The
Covid-tracking Project.
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Simulation results 2

Day 1 is March 14th.

Blue line is the counterfactual death toll without any mitigation policy, red
line is the actual accumulated deaths.
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Economic State Variables

We collect a set of economic related state variables (Et = {E 1
t , ..}).

Specifically Em
t = {bm

t , u
m
t } contains:

bmt is the percentage change of small business revenue.

umt is the change of unemployment rate.

We assume that Et is affected by the COVID-19 situation, but not the
other way around.

We parameterized the transition of Et estimation of the transition density
for Et given COVID-19 state variables and Et−1.
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Economic State Variables

We assume that both bm
t and um

t is evolved according to the following
parameterized AR(1) transition density:

bm
t = ρbbm

t−1 + ρzbZt +
∑
k

ρlb1(lm = k) + emt

um
t = ρuum

t−1 + ρzuZt +
∑
k

ρlu1(lm = k) + emt

where Zt consists of dm
t , (dm

t )2, ∆dm
t and (∆dm

t )2. emt is a i.i.d. N(0, 1)
error.

In practice, all state variables are logged. We pool all regions together in
estimation.

Putting together with our results on p(∆dt , dt | ∆dt−1, dt−1,Lt), we have
the transition density of all the state variables p(Xt |Xt−1,Lt).

The structural of our SIR model makes it sufficient to carry 2 covid state
variables.
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Economic State Var Transition

(1) (2)
Ump Revenue

L.Ump 0.985***
(0.00248)

L.Revenue 0.965***
(0.00817)

L.Daily Death 0.00117 -0.0300***
(0.00134) (0.00630)

L.Daily Death Square -0.000840*** 0.00212***
(0.000139) (0.000733)

L.Cumulative Death -0.00182 0.0297***
(0.00136) (0.00638)

L.Cumulative Death Square 0.000452*** -0.00127***
(0.0000812) (0.000427)

Mitigation Policy=1 -0.00708*** -0.0654***
(0.00147) (0.00767)

Mitigation Policy=2 -0.0144*** -0.0774***
(0.00211) (0.0121)

R-square 1 1
Observations 539 539

Table: Transition Density of Economics State Variables
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Dynamic Game: Per-period Payoffs

The per-period payoff of regional government is described as below:

π(Lt ,Xt , ξ
m
i ) = πp(Em

t , d
m
t , ζ

m, lmt ) + ξmt

where ξmt ∼ N(0, 1) is a choice specific i.i.d. random shock

πp(Em
t , d

m
t , ζ

m, lmt ) = θ′eE
m
t︸ ︷︷ ︸

economic cost

+ θ′d f (dm
t )︸ ︷︷ ︸

loss of lives

+ ζm
L∑
i

θip1{lmt = li}︸ ︷︷ ︸
political cost

f is a polynomial up to the 2nd order.

There is a m specific cost of implementing policy, where ζm is the share of
voters in m that voted for Trump during the 2016 pesidential election.
(Allcott et al.2020)
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Dynamic Game: Equilibrium

We focus on Markov Perfect Equilibrium, i.e. given a same state Xt , ξ
m,

player m make same choices over time.

Follow the BBL, we assume the data observed are generated by a single
MPE profile L.

Per-period payoff function π(Lt ,Xt , ξ
m
i ) satisfies the Monotone Choice

assumption. So we can estimate Pr(lmt |Xt) given the distribution
knowledge of ξmt .
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Dynamic Game: CCP Estimation

We estimate the policy function using the ordered-Probit model.
The dependent variable is the observed policy choice for each day, which is
chosen from an ordered set {0,FSA, SAH}.

Explanatory variables are (logged): emt , umt , ∆dm
t , (∆dm

t )2, dm
t ,∑

m′ 6=m ∆dm′
t , (

∑
m′ 6=m ∆dm′

t )2,
∑

m′ 6=m dm′
t .

Other regions’ state variables are grouped together when enter the policy
function of region m, following Ryan (2012).
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CCP Estimation

Mitigation Policy

Ump 36.12**
(14.49)

Revenue -0.424
(1.974)

Daily Death 2.273
(2.230)

l daily death 2 0.273***
(0.0737)

Cumulative Death -2.174
(2.192)

Sum Daily Death -17.07***
(5.830)

Sum Daily Death Square 1.228***
(0.353)

Sum Cumulative Death 8.601**
(3.710)

cut1
Constant -11.18**

(5.452)

cut2
Constant -0.196

(4.720)

R-square 0.915
Observations 546

Table: Estimation of CCP
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Dynamic Game: Value Function Approximation

We approximate value function through forward simulation a la BBL.

Let V (X; L; θ) denote the value function of firm i at state X, where
Markov strategy L is used by all m.

V (X; L; θ) = E

 T∑
t=0

βtπ
(
L(Xt , ξt),Xt , ξ

m
t ; θ)

)
|X0 = X; θ


where T and β should be chosen s.t. value function after T periods is
sufficiently small, e.g. β = 0.98 and T = 120.
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Dynamic Game: Value Function Approximation

Then we could do the simulation of VF for 546 unique state realizations
observed in the data.

A single simulated path of play can be obtained by the following:
1. Starting at state X0 = X, draw private shock ξmo from N(0, 1) for each m.
2. Pick an action lm0 from any Markov strategy profile L(X0, ξ0) (or any other

deviations of it) and the resulting profits π
(
L(X0, ξ0),X0, ξ

m
0 ; θ)

)
.

3. Draw a new state X1 using the estimated transition density P.
4. Repeat above steps for T periods.

We averaging G different paths of play to obtain a estimate of V (X; L; θ)
given any strategy profiles.

Notice that we can use the linearity simplification because the way θ
enters into the profit function.
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Dynamic Game: Equilibrium and “BBL” Estimator

The strategy profile L is a MPE if and only if ∀m, ∀X, and ∀ alternative
Markov policies l

′
,

V
(

X; l ′,L−m; θ
)
≤ V (X; l ,L−m; θ)

Thus we can form the following estimator (“BBL” Estimator)

θ̂BBL = argmin
θ

∑
X

∑
l
′

max{
(
V
(

X; l ′,L−m; θ
)
− V (X; l ,L−m; θ)

)2

, 0}

To obtain a reasonable estimator, we need to think carefully about the
potential deviation strategy l ′.
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Dynamic Game: Moment Ineq Based Estimator

Alternatively, we could construct a moment inequality based estimator
(‘MI Estimator”), where the moment inequality is of the form∑

X

V
(

X; l ′,L−m; θ
)
− V (X; l ,L−m; θ) ≤ 0

for an alternative strategy l ′.

According to Sweeting (2013), the estimates from above 2 estimators are
sensitive to the choice of alternative strategies.
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Dynamic Game: GMM Estimator

We could also construct GMM estimator by the following steps:

1. When simulating a single path of play, approximate V (X; l , L−m; θ) for all
l = 0, l1, l2 and then find the l that maximizes the object.

2. Simulate for G path and then calculate probability of chosing each choice 0

l1 and l2 based on the simulation results, denote it as vector l̂(X).

3. Find the θ that minimizes the simulation based CCP and actual choice
vector ldata(X) observed in data.

More formally, the GMM estimator is

θGMM = argmin
θ

∑
X

[
l̂(X)− ldata(X)

]′ [
l̂(X)− ldata(X)

]
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Counter-factual 1: Optimal Timing

Social planner seeks to minimize the present discounted loss described as
below:

min
lmt ∈{0,l1,...lL}

∞∑
t=0

δt

∑
m

nm

n
πp(Em

t , d
m
t , ζ

m, lmt )


where

πp(Em
t , d

m
t , ζ

m, lmt ) = θ̂′eE
m
t + θ̂′d f (dm

t ) + ζm
L∑
i

θ̂ip1{lmt = li}

θ̂′e , θ̂′d and θ̂ip are estimates from the previous estimation step.

We seek to solve this single player dynamic problem and find the CCP that
minimizes the PDV.
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Counter-factual 2: Federal Decision Making

Federal government seeks to minimize the present discounted loss
described as below:

min
lmt ∈{0,l1,...lL}

∞∑
t=0

δt
[
πf (Em

t , d
m
t , ζ, l

m
t )
]

where

π
f (Em

t , d
m
t , ζ, l

m
t ) = θ̂

′
e

∑
m

nm

n
Em
t + θ̂

′
d

∑
m

nm

n
f (dm

t ) + ζ
L∑
i

θ̂
i
p1{lmt = li} (1)

θ̂′e , θ̂′d and θ̂ip are estimates from the previous estimation step.

ζ is the share of voters in M regions that voted for Trump in 2016
presidential election.

We seek to solve this single player dynamic problem and find the CCP that
minimizes the PDV.
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Working in progress

We are now at the stage of estimating the transition density of
p(X′ | X,L)

We have a closed form for transition of (i′, d′) conditional on (i, d, L)

Need to (non)parametrically estimate p(E′ | E, i, d, L)

Curse of dimensionality

What rules should be used to determine number of grid when we discretize
the state variables?
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Feedback

Please give us feedback on:

Modeling choices

Estimation strategies

Literature

Any other advice are appreciated!

Thank you!
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