Individual and Common Information: Model-free Evidence from Probability Forecasts

Yizhou Kuang, Nathan Mislang and Kristoffer Nimark Cornell University October 23, 2024

Individual and common information acquisition

Information can improve decisions taken under uncertainty

From the theoretical literature we know that:

- The marginal value of information is state-dependent
- Common information is more likely to affect aggregate outcomes
- Private vs public information dichotomy important in strategic settings

Little empirical work studying relative importance of individual vs common information outside highly structural models

This paper

What we do:

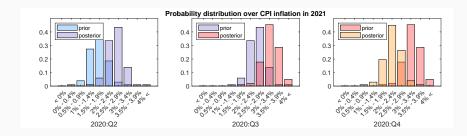
- Propose a method to extract individual and common signals from repeated cross-section of probability forecasts under weak assumptions
- 2. Ask and answer new questions about the empirical properties of individual and common information

Key assumption: Forecasters use Bayes' rule to update their beliefs

The plan

- 1. The Survey of Professional Forecasters (SPF) probability forecasts
- 2. Extracting common and individual signals from a cross-section of belief revisions
- 3. Empirical evidence on the informativeness of individual and common signals
- 4. Characterize the estimated signals

The SPF data


The Survey of Professional Forecasters

Quarterly survey of practitioners about macroeconomic variables

- Participants are from industry, Wall Street, commercial banks and academic research centers
- Survey elicits both point and probability forecasts
- Probability forecasts
 - GDP growth (1968:Q4 \rightarrow), GDP deflator (1968:Q4 \rightarrow), PCE (2007:Q1 \rightarrow), CPI (2007:Q1 \rightarrow) and unemployment (2009:Q2 \rightarrow)
 - Fixed-event forecasts about calendar year outcomes
 - Outcome bins pre-specified by administrators of survey
- Forecasters are anonymous to users of the survey but trackable through id numbers

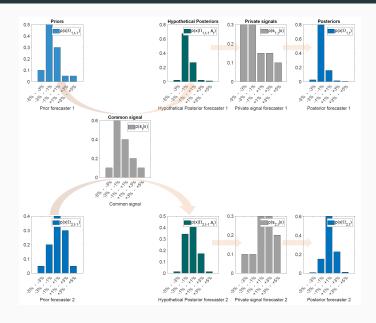
Fixed-event forecasts allow us to observe how cross-section of beliefs about a given calendar year is revised over time

Example: Observed belief revisions of forecaster #570

Decomposing a cross-section of

belief revisions

Decomposing a cross-section of belief revisions


Common signal

• What is the single signal that, if observed by all forecasters, can explain the most of the belief revisions of all the forecasters?

Individual signal

• What is the signal that is necessary to explain a forecaster's residual belief revision not accounted for by the common signal?

Signals and the cross-section of belief revisions

Notation

- Generic macroeconomic outcome $x_n \in X : n = 1, 2, ..., N$
- Forecasters indexed by j = 1, 2, ..., J
- Signals $s \in S$
- Prior beliefs of forecaster j is $p(x \mid \Omega_{t-1}^j)$
- Posterior beliefs of forecaster j is $p(x \mid \Omega_t^j) = p(x \mid \Omega_{t-1}^j, s_t, s_t^j)$

Bayes rule, belief updates and realized signals

Bayes' rule give the posterior probability of x_n as

$$p(x_n \mid \Omega_{t-1}^j, s_t) = \frac{p(s_t \mid x_n)p(x_n \mid \Omega_{t-1}^j)}{p(s_t)}.$$

Since $p(s_t)$ is a normalizing constant independent of x we get

$$p(s_t \mid x_n) \propto \frac{p(x_n \mid \Omega_{t-1}^j, s_t)}{p(x_n \mid \Omega_{t-1}^j)}.$$

Note:

- From now on, a **signal** means $p(s \mid x) \in [0,1]^N$
- Signal labels do not matter for how agents update their beliefs
- An observed belief revision is informative about the properties of the realized signal, not the complete signal structure p(S | X)

Defining the common signal

The estimated **common signal** $\hat{s_t}$ about the event x is defined as

$$\widehat{s}_t = \arg\min_{s \in [0,1]^N} \sum_{j=1}^J \mathit{KL}(\Omega_t, \Omega_{t-1}, s_t)$$

where $KL(\Omega_t, \Omega_{t-1}, s_t)$ is the Kullback-Leibler divergence

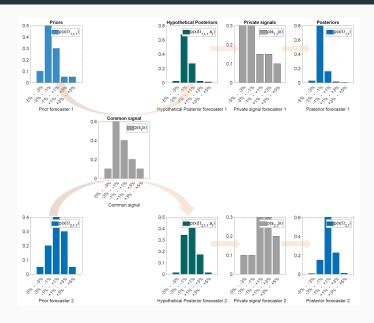
$$KL(\Omega_t^j, \Omega_{t-1}^j, s_t) = \sum_{n=1}^N p(x_n \mid \Omega_t^j) \log \left(\frac{p(x_n \mid \Omega_t^j)}{p(x_n \mid \Omega_{t-1}^j, s_t)} \right).$$

- $p(x \mid \Omega_t^j) = \text{observed posterior}$
- $p(x \mid \Omega_{t-1}^{j}, s_t) = \text{beliefs induced by } s_t$

Inverting Bayes Rule to extract individual signals

Define the **individual signal** s_t^j as the signal that when combined with the common signal and the observed prior result in the observed posterior.

From Bayes' rule


$$p(x_n \mid \Omega_{t-1}^j, s_t, s_t^j) = \frac{p(s_t^j \mid x_n)p(x_n \mid \Omega_{t-1}^j, s_t)}{p(s_t^j \mid \Omega_{t-1}^j, s_t)}.$$

so that

$$p(s_t^j \mid x_n) \propto \frac{p(x_n \mid \Omega_{t-1}^j, s_t, s_t^j)}{p(x_n \mid \Omega_{t-1}^j, s_t)}.$$

where $p(x \mid \Omega_t^j) \equiv p(x_n \mid \Omega_{t-1}^j, s_t, s_t^j)$ is the period t posterior.

Signals and the cross-section of belief revisions

3 measures of signal

informativeness

3 measures of signal informativeness

1. The **update measure** captures magnitude of belief revision

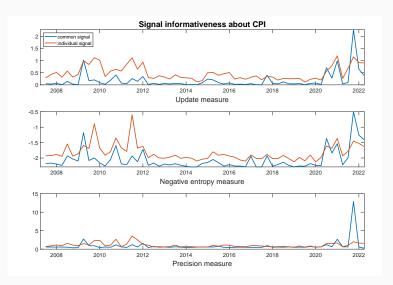
$$KL(s, \Omega^{j}) = \sum_{n=1}^{N} p(x_{n} \mid \Omega^{j}) \log \left(\frac{p(x_{n} \mid \Omega^{j})}{p(x_{n} \mid \Omega^{j}, s)} \right)$$

2. The **negative entropy measure** captures magnitude of belief revision from a maximum entropy prior

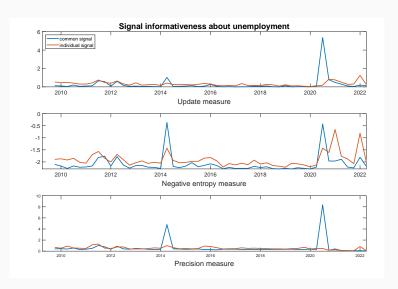
$$H(s) = \sum_{n=1}^{N} p(x_n \mid \Omega^u, s) \log p(x_n \mid \Omega^u, s)$$

where Ω^u is the uniform prior.

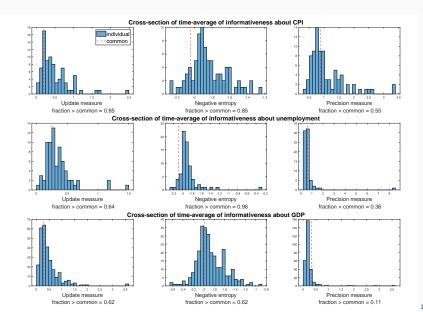
3. The precision measure captures precision of signal


$$P(s) = var(x_n \mid \Omega^u, s)^{-1}$$

All measures are defined so that a higher value implies a more informative signal


Empirical properties of individual

and common signals


Time varying informativeness of signals about CPI inflation

Time varying informativeness of signals about unemployment

Cross-section of informativeness of signals

Informativeness and the business cycle: Theory

Information counter-cyclical: Incentives to acquire information strongest during downturns

- Chiang (WP 2022), Song and Stern (2022) and Flynn and Sastry (WP 2022)

or

Information pro-cyclical: Economic activity generates information

 Chalkley and Lee (RED 1998), Veldkamp (JET 2005), Van Nieuwerburgh and Veldkamp (JEEA 2006), Ordoñez (JPE 2013), Fajgelbaum, Shaal and Taschereau-Dumouchel (QJE 2017)

The Anxious Index: Informativeness and probability of a recession

	CPI inflation	unemployment	GDP growth	GDP deflator	PCE inflation	
Individual signals						
KL	0.20	0.06	0.27	0.23	0.24	
Н	0.15	0.24	0.27	0.17	0.24	
P	0.13	-0.20	-0.02	-0.06	0.23	
Common signals						
KL	0.16	0.72	0.18	0.08	0.19	
Н	0.26	0.45	0.24	0.14	0.17	
P	0.03	0.58	0.04	-0.10	0.04	

Table 1: Correlation between the Philadelphia Fed's *Anxious Index* and the measures of informativeness.

But: Informativeness of signals only weakly correlated with NBER recessions and with mixed signs.

The VIX Index: Informativeness and financial volatility

	CPI inflation	unemployment	GDP growth	GDP deflator	PCE inflation	
Individual signals						
KL	0.29	0.36	0.25	0.12	0.22	
Н	0.29	0.30	0.20	0.10	0.23	
Ρ	0.32	0.03	0.17	-0.02	0.19	
Common signals						
KL	0.12	0.26	0.22	0.15	0.17	
Н	0.25	0.16	0.22	0.12	0.22	
P	0.02	0.10	0.17	-0.07	0.05	

Table 2: Correlation between VIX and measures of informativeness.

signals

Characterizing the extracted

Properties of the extracted signals

Proposition: The estimated common signal \hat{s}_t induces average beliefs equal to the average observed posterior distribution

$$\frac{1}{J} \sum_{j=1}^{J} p(x_n \mid \Omega_{t-1}, \widehat{s}_t) = \frac{1}{J} \sum_{j=1}^{J} p(x_n \mid \Omega_t) : n = 1, 2, ..., N.$$
 (1)

Corollary: The estimated individual signals induces belief updates that average to zero across agents

$$\frac{1}{J} \sum_{j=1}^{J} \left[p\left(x_{n} \mid \widehat{s}_{t}^{j}, \widehat{s}_{t}, \Omega_{t-1}^{j} \right) - p\left(x_{n} \mid \widehat{s}_{t}, \Omega_{t-1}^{j} \right) \right] = 0 : n = 1, 2, ..., N.$$
(2)

Results for alternative information structures

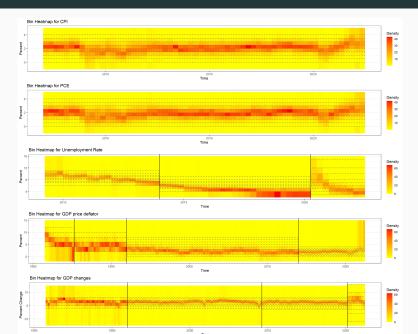
General discrete signal structures

• Sufficient conditions for $\hat{s}_t \to s_t$ as $J \to \infty$

Linear-Gaussian signal extraction set-up

• Closed-form expressions for $\widehat{s_t}$, $p(\widehat{s_t} \mid x)$ and $p(\widehat{s_t^j} \mid x)$

Different agents interpret common signal differently


• Expression for \hat{s}_t as a function of average agent-specific likelihood functions

Summing up

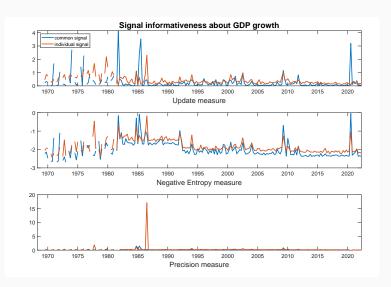
Decompose cross-section of belief revisions into common and idiosyncratic sources

- Method imposes only relatively weak assumptions
- Individual signals on average more informative than common signals
 - Large heterogeneity across forecasters
- Informativeness of both individual and common signals about macro outcomes increase when recession probability is high
 - Information acquisition appears to be counter-cyclical
- Characterized properties of extracted signals in alternative settings
 - Allows for model dependent interpretations

Heat map for average density forecasts

Informativeness and macro outcomes: CPI inflation

CPI inflation						
	π_t^{cpi}	π^{cpi}_{t-1}	$\Delta\pi_t^{cpi}$	$\Delta \pi_t^{cpi}$	$\Delta \pi_{t-1}^{cpi}$	
Individual signals						
KL	-0.08	-0.13	0.08	0.48	0.45	
Н	-0.20	-0.22	-0.03	0.36	0.35	
Ρ	-0.17	-0.22	0.05	0.36	0.35	
Common signals						
KL	0.12	0.15	-0.03	0.23	0.44	
Н	0.25	0.21	0.14	0.45	0.53	
P	0.02	0.04	-0.12	-0.06	0.29	


Table 3: Correlation of information measures and CPI inflation outcomes.

Informativeness and macro outcomes: Unemployment

Unemployment						
	ut	u_{t-1}	Δu_t	$ \Delta u_t $	$ \Delta u_{t-1} $	
Individual signals						
KL	0.27	0.38	-0.18	-0.06	-0.19	
Н	0.16	0.31	-0.24	0.07	-0.10	
Ρ	0.32	0.28	0.06	-0.11	-0.11	
Common signals						
KL	0.22	0.48	-0.41	0.38	0.14	
Н	0.20	0.40	-0.31	0.24	0.04	
P	0.21	0.43	-0.35	0.31	0.12	

Table 4: Correlation of information measures and unemployment outcomes.

Time varying informativeness of signals about GDP growth

